Answer:
14.77 mol.
Explanation:
- It is known that every 1.0 mole of compound or element contains Avogadro's number (6.022 x 10²³) of molecules or atoms.
<u><em>Using cross multiplication:</em></u>
1.0 mole of He contains → 6.022 x 10²³ atoms.
??? mole of He contains → 8.84 x 10²⁴ atoms.
<em>∴ The no. of moles of He contains (8.84 x 10²⁴ atoms) </em>= (1.0 mol)(8.84 x 10²⁴ atoms)/(6.022 x 10²³ atoms) =<em> 14.77 mol.</em>
Answer:
2.15
Explanation:
For this question, we have to remember the <u>pH formula</u>:
![pH~=~-Log[H_3O^+]](https://tex.z-dn.net/?f=pH~%3D~-Log%5BH_3O%5E%2B%5D)
By definition, the pH value is calculated when we do the -Log of the concentration of the <u>hydronium ions</u> (
). So, the next step is the calculation of the <u>concentration</u> of the hydronium ions. For this, we have to use the <u>molarity formula</u>:

We already know the number of moles (0.0231 moles) and the volume (3.33 L). So, we can plug the values into the molarity formula:

With this value, now we can calculate the pH value:
![pH~=~-Log[0.00693~M]~=~2.15](https://tex.z-dn.net/?f=pH~%3D~-Log%5B0.00693~M%5D~%3D~2.15)
<u>The pH would be 2.15</u>
I hope it helps!
Answer:
The SI units for measuring the velocity of the car: meters per second
(m/s)
The Sl units for measuring the acceleration of the car: meters per second squared (m/s^2)
The SI units for measuring force: Newton (N)
The SI units for measuring mass: kilograms (kg)
Explanation:
Système international (SI) or International System of Units consist of a list of unit measurement that mostly used by scientist. The scientist from a different country might use different unit that makes them have to convert the result of each other. The usage of the same unit measurement will help the scientist to read that publication easier, make it easier to share and discuss any topic. The unit used is metric since the decimal system also makes the conversion of a unit easier.
Answer:
The correct answer will be "4.60 g".
Explanation:
The given values are:
Volume of Butane = 7.96 mL
Density = 0.579 g/mL
As we know,
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 