<span>The answer is 200 mol of water.
The balanced reaction is 2(H2) + (O2) = 2(H2O)
The limiting reactant is O2 as it will be completely consumed first, before hydrogen gas. Hydrogen gas would need at least 105 mol oxygen gas to be consumed; in excess of the 100 mol O2.
Looking at the stoichiometric coefficients, the ratio between water and oxygen is 2:1.
Therefore, the water produced would be 200 moles.</span>
One of the many awe-inspiring things about algae, Professor Greene explains, is that they can grow between ten and 100 times faster than land plants. In view of this speedy growth rate – combined with the fact they can thrive virtually anywhere in the right conditions – growing marine microalgae could provide a variety of solutions to some of the world’s most pressing problems.
Take, global warming. Algae sequesters CO2, as we have learned, but owing to the fact they grow faster than land plants, can cover wider areas and can be utilised in bioreactors, they can actually absorb CO2 more effectively than land plants. AI company Hypergiant Industries, for instance, say their algae bioreactor was 400 times more efficient at taking in CO2 than trees.
And it’s not just their nutritional credentials which could solve humanity’s looming food crisis, but how they are produced. Marine microalgae grow in seawater, which means they do not rely on arable land or freshwater, both of which are in limited supply. Professor Greene believes the use of these organisms could therefore release almost three million km2 of cropland for reforestation, and also conserve one fifth of global freshwater
A ground state electron configuration follows the Aufbau Principle that states that electrons should be filled up in orbitals in increasing energy. In the given sequences, the right configuration is
<span>1s2 2s2 2p6 3s2 3p6 4s2 3d8.
2) the possible confirmation that follows Aufbau's principle is
D. </span><span>-[Kr] 5s24d105p3</span>
I believe it is Sodium. I could be wrong though.