Answer:
66.5N
Explanation:
F = kx
Where F = force
K = spring constant
x = compression
Given
K = 950N/m
x = 7.0cm
F = ?
First convert the compression to meters .
7.0cm = 7.0 x 0.01
= 0.07 meters
Therefore
F = 950 x 0.07
= 66.5N
7) 6, i believe, (Cu) 1 atom+ (S) 1 atom+(0)4 atoms.
Answer:
<h3>
The area of second coil is ≅ 0.025 
</h3>
Explanation:
Given :
No. of turns in the first coil 
No. of turns in the second coil 
Area of first coil 
According to the law of electromagnetic induction,
Induced emf =
Where
magnetic flux.
Since given in question emf of both coil is same so we compare above equation.




Therefore, the area of second coil is ≅ 0.025 
A force vector F1 points due
east and has a magnitude of 200 Newtons, A second force F2 is added to F1. The
resultant of the two vectors has a magnitude of 400 newtons and points along
the due east/west line. Find the magnitude and direction of F2. Note that there
are two answers.
<span>The given values are
F1 = 200 N</span>
F2 =?
Total = 400 N
Solution:
F1 + F2 = T
200 N + F2 = 400N
F2 = 400 - 200
F2 = 200
N
<h2>
Answer:</h2>
-310J
<h2>
Explanation:</h2>
The change in internal energy (ΔE) of a system is the sum of the heat (Q) and work (W) done on or by the system. i.e
ΔE = Q + W ----------------------(i)
If heat is released by the system, Q is negative. Else it is positive.
If work is done on the system, W is positive. Else it is negative.
<em>In this case, the system is the balloon and;</em>
Q = -0.659kJ = -695J [Q is negative because heat is removed from the system(balloon)]
W = +385J [W is positive because work is done on the system (balloon)]
<em>Substitute these values into equation (i) as follows;</em>
ΔE = -695 + 385
ΔE = -310J
Therefore, the change in internal energy is -310J
<em>PS: The negative value indicates that the system(balloon) has lost energy to its surrounding, thereby making the process exothermic.</em>
<em />
<em />