Answer:

Explanation:
Given that
Mass of rifle = M
Initial velocity ,u= 0
Mass of bullet = m
velocity of bullet = v
Lets take final speed of the rifle is V
There is no any external force ,that is why linear momentum of the system will be conserve.
Initial linear momentum = Final linear momentum
M x 0 + m x 0 = M x V + m v
0 = M x V + m v

Negative sign indicates that ,the recoil velocity will be opposite to the direction of bullet velocity.
I'm going to assume that this gripping drama takes place on planet Earth, where the acceleration of gravity is 9.8 m/s². The solutions would be completely different if the same scenario were to play out in other places.
A ball is thrown upward with a speed of 40 m/s. Gravity decreases its upward speed (increases its downward speed) by 9.8 m/s every second.
So, the ball reaches its highest point after (40 m/s)/(9.8 m/s²) = <em>4.08 seconds</em>. At that point, it runs out of upward gas, and begins falling.
Just like so many other aspects of life, the downward fall is an exact "mirror image" of the upward trip. After another 4.08 seconds, the ball has returned to the height of the hand which flung it. In total, the ball is in the air for <em>8.16 seconds</em> up and down.
An object in motion will stay in motion, therefore the person will still be going the same speed as the car was going before the collision