1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
2 years ago
15

How do unicellular organisms grow?

Physics
2 answers:
In-s [12.5K]2 years ago
8 0

Answer:

The answer is C

Explanation:

Snezhnost [94]2 years ago
3 0

Answer:

C is your answer good luck

Explanation:

You might be interested in
A submarine travels 25 km/h north for 3.2 hours. What is its displacement?
Vika [28.1K]

displ = velocity x time

25 x 3.2 = 75+5 km north.

7 0
2 years ago
Read 2 more answers
How was the formation of the outer planets affected by their distance from the sun?
djverab [1.8K]

The formation of the outer planets are affected by their distance from the sun with having them to maintain the lighter elements that they are composed of such as the hydrogen and helium, having them far away will also make their planet more cooler as the sun is distant from them.

6 0
2 years ago
Can I PLEASE get some help? I REALLY need it!
soldi70 [24.7K]
The answer is C. Hope this helps.
7 0
3 years ago
A skydiver has jumped out of a plane and is falling faster and faster. what forces are present in this situation
kompoz [17]
Gravity and air resistance 

i took the test and got 100%
5 0
3 years ago
Observe the given figure and find the the gravitational force between m1 and m2.​
Leno4ka [110]

Answer:

The gravitational force between m₁ and m₂, is approximately 1.06789 × 10⁻⁶ N

Explanation:

The details of the given masses having gravitational attractive force between them are;

m₁ = 20 kg, r₁ = 10 cm = 0.1 m, m₂ = 50 kg, and r₂ = 15 cm = 0.15 m

The gravitational force between m₁ and m₂ is given by Newton's Law of gravitation as follows;

F =G \cdot \dfrac{m_{1} \cdot m_{2}}{r^{2}}

Where;

F = The gravitational force between m₁ and m₂

G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²

r₂ = 0.1 m + 0.15 m = 0.25 m

Therefore, we have;

F = 6.67430 \times 10^{-11} \ N \cdot m^2/kg \times \dfrac{20 \ kg\times 50 \ kg}{(0.1 \ m+ 0.15 \ m)^{2}} \approx 1.06789 \times 10^{-6} \ N

The gravitational force between m₁ and m₂, F ≈ 1.06789 × 10⁻⁶ N

8 0
2 years ago
Other questions:
  • 1 every 30,000 miles, __________. replace the brakes vacuum the interior service the automatic transmission (if your car has one
    8·2 answers
  • Consider an opaque horizontal plate that is well insulated on its back side. The irradiation on the plate is 2500 W/m2, of which
    14·1 answer
  • A baseball pitcher throws a baseball horizontally at a linear speed of 49.4 m/s. Before being caught, the baseball travels a hor
    9·1 answer
  • A little girl slid down a playground slide, decreasing her potential energy by 1000 J while increasing her kinetic energy by onl
    12·2 answers
  • Two radioactive nuclei A and B are present in equal numbers to begin with. Three days later, there are 4.04 times as many A nucl
    8·1 answer
  • Which is an example of a chemical change?
    10·2 answers
  • When a 5.0-kilogram cart moving with a speed of 2.8 meters per second on a horizontal surface collides with a 2.0 kilogram cart
    14·1 answer
  • PLEASE HELP!!
    13·1 answer
  • A particle is moving in a straight line.at t second, it acceleration is (4-kt), where k is a constant. when t=6, the acceleratio
    14·1 answer
  • The diagram below shows a golf ball being struck by a club. The ball leaves the club with a speed of 40 meters per second at an
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!