Answer:
<em>The penny will hit the ground at 6.39 seconds</em>
Explanation:
<u>Free Fall</u>
The penny is dropped from a height of y=200 m. The equation of the height on a free-fall motion is given by:

Where
, and t is the time.
Solving for t:

Using the value y=200:

t=6.39 sec
The penny will hit the ground at 6.39 seconds
true because it means that the cloud formation of a tornado has been already spotted.
(a) Equating centripetal force to friction force, one finds the relation
v² = kar
for car speed v, coefficient of friction k, radius of curvature r, and downward acceleration a.
There is already downward acceleration due to gravity. The additional accceleration due to the wing is
a = F/m = 10600 N/(805 kg) ≈ 13.1677 m/s²
We presume this is added to the 9.80 m/s² gravity provides, so the coefficient of friction is
k = v²/(ar) = (54 m/s)²/((13.1677 m/s² +9.80 m/s²)·(155 m))
k ≈ 0.8191
(b) The maximum speed is proportional to the square root of the downward acceleration. Changing that by a factor of 9.80/(9.80+13.17) changes the maximum speed by the square root of this factor.
max speed with no wing effect = (54 m/s)√(9.8/22.97) ≈ 35.27 m/s