The correct answer is
"As the distance from the earth increases, the gravitational pull on the spaceship would decrease."
In fact, the gravitational force (attractive) exerted by the Earth on the spaceship is given by
where G is the gravitational constant, M the Earth's mass, m the mass of the spaceship and d the distance of the spaceship from the Earth. As we can see from the formula, as the distance d between the spaceship and the Earth increases, the gravitational force F decreases, so answer D) is the correct one.
Answer:
5.3 cm
Explanation:
This question is an illustration of real and apparent distance.
From the question, we have the following given parameters
Real Distance, R = 8.0cm
Refractive Index, μ = 1.5
Required
Determine the apparent distance (A)
The relationship between R, A and μ is:
μ = R/A
i.e.
Refractive Index = Real Distance ÷ Apparent Distance
Substitute values in the above formula
1.5 = 8/A
Multiply both sides by A
1.5 * A = A * 8/A
1.5A = 8
Divide both side by 1.5
1.5A/1.5 = 8/1.5
A = 8/1.5
A = 5.3cm
Hence, the letters would appear at a distance of 5.3cm
Answer:
1.63 N
Explanation:
F = GMm/r^2
= (6.67x10^-11)(10x10^5)(3x10^5) / 3.5^2
= 1.63 N ( 3 sig. fig.)
The answer for this is b 3.500.000j
Answer:
3.51s
Explanation:
There are many students who can not get answers step by step and on time
So there are a wats up group where you can get help step by step and well explained by the trusted experts.