Answer:
In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as
c=4.18Jg∘C
Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.
Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of 1 g of that substance by 1∘C.
In water's case, you need to provide 4.18 J of heat per gram of water to increase its temperature by 1∘C.
What if you wanted to increase the temperature of 1 g of water by 2∘C ?
This will account for increasing the temperature of the first gram of the sample by n∘C, of the the second gramby n∘C, of the third gram by n∘C, and so on until you reach m grams of water.
And there you have it. The equation that describes all this will thus be
q=m⋅c⋅ΔT , where
q - heat absorbed
m - the mass of the sample
c - the specific heat of the substance
ΔT - the change in temperature, defined as final temperature minus initial temperature
In your case, you will have
q=100.0g⋅4.18Jg∘C⋅(50.0−25.0)∘C
q=10,450 J
Answer:
a)M=0.20/(0.335*0.1025)= 0.20/ 0.034 = 5.88 g/mol
b) if 0.100g is used instead of 0.200g
M = 0.1 / 0.034 = 2.94 hence the molar mass will be too low
Explanation:
0.2000 gHZ gives 100ml acid solution
33.5 ml of 0.1025 M NaOH is required to prepare it
the moles = mass / molar mass
mass = 0.200 gHZ
moles = 0.0335*100 * 0.1025 = 0.034
therefore molar mass = mass / moles
M=0.20/(0.335*0.1025)= 0.20/ 0.034 = 5.88
if 0.100g is used instead of 0.200g
M = 0.1 / 0.034 = 2.94 hence the molar mass will be too low
This it true because in the triangle of the transformation from solid, liquid, and gas
:0<span />
Answer: A: high ionization energies; high electron affinitlies.
Explanation: Covalent bonds are basically about sharing of electrons between two atoms to achieve that stable structure. They are formed between two atoms when both have similar tendencies to attract electrons to themselves (i.e., when both atoms have identical or fairly similar ionization energies and electron affinities). Covalent bonding usually occurs between two non-metals.
For effective and proper bonding, the two atoms involved in the covalent bonding exercise should be small and hungry for electrons. This is to enable the nuclei of both atoms to effectively attract and hold the shared electron(s) in place; hence, the need for high ionization energies & high electron affinities for a more effective covalent bonding.