Answer:
D.
Explanation:
But this just happen for big stars, like more than 20x the Sun mass.
Shortly: A nebula is a cloud of gas and dust, the material starts to be acummuleted and became a protostar (is like a big planet, almost a star). With enought mass this is a star, burn hydrogen and transform it in Helium.
This occurs in Main Sequence, is about almost all the life time of a star. Then starts the lack of hydrogen. Gravity compress everything, pressure goes up and heat all. Too much energy, Helium get burned and the star grews fast, became a Red Giant. Time pass and the fuel is over, no more making fusion, gravity compress the star, too much strenght, colapses, neutron star.
If it have pretty mass, ok. If have more than like 2x Sun mass, became a blackhole.
Answer:
150000000
49050000 N/C
Explanation:
q = Charge = 24 pC
m = Mass of honeybee = 0.12 g
E = Electric field = 100 N/C
g = Acceleration due to gravity = 9.81 m/s²
Number electrons is
The number of electrons added or removed was 150000000
Force is given by
The ratio is
The ratio is
Balancing the forces we get
The electric field required is 49050000 N/C
False. They are arranged in a structure called a crystal lattice
Answer:
I would love to help but I don't know I'm so sorry
Answer:
D. Both occur between objects independently whether they are in contact or not.
Explanation:
- The gravitational force is a force that is exerted between two (or more) objects having mass. This force is always attractive and its magnitude is given by
where G is the gravitational constant, m1 and m2 are the two masses, and r is the distance between the two masses.
- The electrical force is a force that is exerted between two (or more) objects having electrical charge. It can be either attractive or repulsive, depending on the sign of the two charges, and its magnitude is given by
where k is the Coulomb's constant, q1 and q2 are the two charges, and r the distance between the two charges.
Looking at both formulas, we see that the two forces are present even when the two objects are not in contact with each other (in fact, r can assume any value in the formula). They are said to be non-contact forces. Therefore, the correct option is
D. Both occur between objects independently whether they are in contact or not.