In order for the molecules to actually separate from each other, more energy must be added. This energy, called heat of fusion or heat of melting, is absorbed by the particles as potential energy as the solid changes to a liquid. I hope this helps
Answer:
The frequency of the photon is 7.41*10¹⁶ Hz
Explanation:
Planck states that light is made up of photons, whose energy is directly proportional to the frequency of radiation, according to a constant of proportionality, h, which is called Planck's constant. This is expressed by:
E = h*v
where E is the energy, h the Planck constant (whose value is 6.63*10⁻³⁴ J.s) and v the frequency (Hz or s⁻¹).
So the frequency will be:

Being E= 4.91*10⁻¹⁷ J and replacing:

You can get:
v= 7.41*10¹⁶
= 7.41*10¹⁶ Hz
<u><em>The frequency of the photon is 7.41*10¹⁶ Hz</em></u>
<u><em></em></u>
Answer:
C. at low temperature and low pressure.
Explanation:
- <em>Le Châtelier's principle </em><em>states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.</em>
<em />
<em>2CO₂(g) ⇄ 2CO(g) + O₂(g), ΔH = -514 kJ.</em>
<em></em>
<em><u>Effect of pressure:</u></em>
- When there is an increase in pressure, the equilibrium will shift towards the side with fewer moles of gas of the reaction. And when there is a decrease in pressure, the equilibrium will shift towards the side with more moles of gas of the reaction.
- The reactants side (left) has 2.0 moles of gases and the products side (right) has 3.0 moles of gases.
<em>So, decreasing the pressure will shift the reaction to the side with higher no. of moles of gas (right side, products), </em><em>so the equilibrium partial pressure of CO (g) can be maximized at low pressure.</em>
<em></em>
<u><em>Effect of temperature:</em></u>
- The reaction is exothermic because the sign of ΔH is (negative).
- So, we can write the reaction as:
<em>2CO₂(g) ⇄ 2CO(g) + O₂(g) + heat.</em>
- Decreasing the temperature will decrease the concentration of the products side, so the reaction will be shifted to the right side to suppress the decrease in the temperature, <em>so the equilibrium partial pressure of CO (g) can be maximized at low temperature.</em>
<em></em>
<em>C. at low temperature and low pressure.</em>
<em></em>