B. As particles travel in straight lines, their paths sometimes meet, and then they bounce apart with no gain or loss of energy.
Explanation:
The best statement that describes the collision of gas particles according to the kinetic-molecular theory is that as particles travel in straight lines, their paths sometimes meet and then they bounce apart with no gain or loss of energy.
- The kinetic molecular theory is used to explain the forces between molecules and their energy.
One of the postulate suggests that, when molecules collide with each other, or with the wall of the container, there is no loss or gain of energy.
- Molecules are independent of one another and that forces of attraction and repulsion between molecules are negligible.
Learn more:
Particle collision brainly.com/question/6439920
#learnwithBrainly
You just need to multiply the terms and transform to kj by dividing by 1000
1) 10.4kj
2) 14.5 kj
3) 44.8 kj
4) 1.04 kj
and there you go.
Boiling point
i hope this helps.
Na = 23 x 2.40 = 55.2
O = 16 x 2.40 = 38.4
H = 1 x 2.40 = 2.40
55.2 + 38.4 + 2.4 = 96
2.40 mol of NaOH = 96 amu
Answer:
Part 1: 7.42 mL; Part 2: 3Cu²⁺(aq) + 2PO₄³⁻(aq) ⟶ 2Cu₃(PO₄)₂(s)
Explanation:
Part 1. Volume of reactant
(a) Balanced chemical equation.

(b) Moles of CuCl₂

(c) Moles of Na₃PO₄
The molar ratio is 2 mmol Na₃PO₄:3 mmol CuCl₂

(d) Volume of Na₃PO₄

Part 2. Net ionic equation
(a) Molecular equation

(b) Ionic equation
You write molecular formulas for the solids, and you write the soluble ionic substances as ions.
According to the solubility rules, metal phosphates are insoluble.
6Na⁺(aq) + 2PO₄³⁻(aq) + 3Cu²⁺(aq) + 6Cl⁻(aq) ⟶ Cu₃(PO₄)₂(s) + 6Na⁺(aq) + 6Cl⁻(aq)
(c) Net ionic equation
To get the net ionic equation, you cancel the ions that appear on each side of the ionic equation.
<u>6Na⁺(aq)</u> + 2PO₄³⁻(aq) + 3Cu²⁺(aq) + <u>6Cl⁻(aq)</u> ⟶ Cu₃(PO₄)₂(s) + <u>6Na⁺(aq)</u> + <u>6Cl⁻(aq)</u>
The net ionic equation is
3Cu²⁺(aq) + 2PO₄³⁻(aq) ⟶ Cu₃(PO₄)₂(s)