Because they are different they all show different traits.
The answer is A because at a young age children will not understand and they need to learn at the appropriate level
516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
By definition of energy efficiency, we derive an expression for the energy rate exhausted to the river (
), in megawatts:
(1)
Where:
- Efficiency.
- Electric power, in megawatts.
If we know that
and
, then the energy rate exhausted to the river is:


516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
We kindly to check this question on first law of thermodynamics: brainly.com/question/3808473
Answer:
Moment of inertia = 0.3862kg-m²
Explanation:
2.00x10³
2.80cm
145 rad
r = r⊥ x F
F is an applied force
r⊥ is the distance between the applied force and axis
Force exerted = 2.00x10³
r⊥ = 2.8cm = 0.028m
Alpha = 145rad/s²
r = 0.028m x 2.00x10³
r = 56.0N-m
To get the moment of inertia
56.0N-m² = (145rad/s²) x I
The I would be:
I = (56.0N-m²)/(145rad/s²)
I = 56/145
= 0.3862Kg-m²
This is the moment of inertia.
Thank you!
Answer:
the answer for the question is the last option