Temperature is the average amount of energy of motion of each particle of a substance<span>. That is, temperature is a measure of how hot or cold a </span>substance<span> is. In contrast, the total </span>energy of motion<span> in the </span>particles of a substance is called<span> thermal</span>energy<span>.</span>
Answer: Metals are shiny and lustrous with a high density. They have very high melting and boiling points because metallic bonding is very strong, so the atoms are reluctant to break apart into a liquid or gas.
Explanation:
sorry for not answering in less than 1 minute
Answer:
Solid, liquid or gas. So there is movement no matter the state. The key variable is density. The higher the density the less movement. In solids the motion can be so small it's very hard to measure. Gas on the other hand is easy the motion being large. Bear in mind temperature plays a big role. Higher temps bring faster motion. Finally the pressure of the gas brings about less motion the higher it is as the molecules are closer together & can't move as much.
Explanation:
Answer:
1.096g
Explanation:
You must know the atomic mass of Hydrogen, Fluorine, and Sodium before you can start:
Hydrogen: 1.008g/mol
Fluorine: 18.99g/mol
Sodium: 22.98g/mol
Next, find the composition percentage of NaF
22.98 + 18.99 = 41.97
Fluorine is 18.99/41.97 =45.25%
Sodium is 100-45.25 = 54.75%
Ultimately we want to know about HF so find how much F is in 2.3g: 2.3 * 0.4525 = 1.041g
Find comp. percentage of HF
18.99+1.008 = 19.998; H/total F/total
Hydrogen 5.041%
Fluorine 94.959%
Laws of conservation of say we have 1.041g of fluorine in our HF. We know 1.041 is 94.959% of the mass of HF so do some simple math to find the remaining: 1.041/0.94959 = 1.096g
Answer:
6.24%
Explanation:
Molality by definition means a measurement of the number of moles of solute in solution with 1000 gm or 1Kg solvent. Notice the difference that Molarity is defined on the volume of solution and Molality on the mass of solvent.
So, An aqueous solution of iron(II) iodide has a concentration of 0.215 molal.
means 0.215 moles are present in 1 Kg of solvent.
The molar mass of Fe2I = 309.65 g / mole
mass of FeI2 = moles x molar mass
= 0.215 x 309.65
=66.57 gm
mass % of FeI2 = mass of FeI2 x 100 / total mass
= 66.57x 100 / (1000 +66.57)
= 6.24%