Answer: Dampness or moisture introduces hydrogen into the weld, which causes cracking when some metals are welded.
Explanation:
<em>This moisture (hydrogen) is a major cause of weld cracking and porosity. </em>
Waves in the electric and magnetic fields are known as electromagnetic waves. You must first understand what a field is, which is just a technique of giving each square inch of space a numerical value. You may see that as a temperature field, for instance, when you look at the weather predictions and they mention the temperature in several locations. Every location on Earth has a unique temperature that can be quantified. Everywhere on Earth has its own wind velocity, which is another form of field. This field differs somewhat from the temperature field in that the wind velocity has both a direction and a magnitude, whereas the temperature just has a magnitude (how hot it is). A vector is a quantity that has both magnitude and direction, hence a field that contains vectors at every location is referred to as a vector field. Vector fields include the magnetic and electric fields. We may examine what would happen if we placed a charged particle at any given position in space. If the charged particle were to accelerate, we would state that the electric field there is the direction in which the particle is moving. In general, positively charged particles will move in the electric field's direction, whereas negatively charged particles will move in the opposite way. Because it is a vector field, the magnetic field exhibits comparable behavior. We discovered in the 19th century that the same interaction, electromagnetism, really produces both electric and magnetic fields. Like an electromagnet, a changing electric field will produce a magnetic field, and a changing magnetic field will induce an electric field (like in a generator). If your system is configured properly, you may have an electric field that fluctuates, which in turn produces a magnetic field, which in turn induces another electric field, which in turn generates another magnetic field, and so on indefinitely. At the speed of light, this oscillation between a strong magnetic field and strong electric field spreads out indefinitely. In reality, light is an electromagnetic wave—an oscillation in the electromagnetic fields. An electric or magnetic field may exist without a medium since they exist in a vacuum, which implies that waves in these fields don't require a medium like sound to flow through.
The maintenance is in charge of controlling that all the machines of a company are constantly running in order to avoid damages that cause loss of money when the machines fail.
The maintenance based on vibration monitoring allows to predict failures in some rotating machines such as:
1. worn bearings
2.alignment
3.balance
4. affected gears
5. bent shafts
6. rocks
7.gags
8. eccentricity
9. failures of electrical origin
Answer:
5984.67N
Explanation:
A 14 inch diameter pipe is decreased in diameter by 2 inches through a contraction. The pressure entering the contraction is 28 psi and a pressure drop of 2 psi occurs through the contraction if the upstream velocity is 4.0 ft/sec. What is the magnitude of the resultant force (lbs) needed to hold the pipe in place?
from continuity equation
v1A1=v2A2
equation of continuity
v1=4ft /s=1.21m/s
d1=14 inch=.35m
d2=14-2=0.304m
A1=pi*d^2/4
0.096m^2
a2=0.0706m^2
from continuity once again
1.21*0.096=v2(0.07)
v2=1.65
force on the pipe
(p1A1- p2A2) + m(v2 – v1)
from bernoulli
p1 + ρv1^2/2 = p2 + ρv2^2/2
difference in pressure or pressure drop
p1-p2=2psi
13.789N/m^2=rho(1.65^2-1.21^2)/2
rho=21.91kg/m^3
since the pipe is cylindrical
pressure is egh
13.789=21.91*9.81*h
length of the pipe is
0.064m
AH=volume of the pipe(area *h)
the mass =rho*A*H
0.064*0.07*21.91
m=0.098kg
(193053*0.096- 179263.6* 0.07) + 0.098(1.65 – 1.21)
force =5984.67N
Answer:
(a) 2.39 MPa (b) 3.03 kJ (c) 3.035 kJ
Explanation:
Solution
Recall that:
A 10 gr of air is compressed isentropically
The initial air is at = 27 °C, 110 kPa
After compression air is at = a450 °C
For air, R=287 J/kg.K
cv = 716.5 J/kg.K
y = 1.4
Now,
(a) W efind the pressure on [MPa]
Thus,
T₂/T₁ = (p₂/p₁)^r-1/r
=(450 + 273)/27 + 273) =
=(p₂/110) ^0.4/1.4
p₂ becomes 2390.3 kPa
So, p₂ = 2.39 MPa
(b) For the increase in total internal energy, is given below:
ΔU = mCv (T₂ - T₁)
=(10/100) (716.5) (450 -27)
ΔU =3030 J
ΔU =3.03 kJ
(c) The next step is to find the total work needed in kJ
ΔW = mR ( (T₂ - T₁) / k- 1
(10/100) (287) (450 -27)/1.4 -1
ΔW = 3035 J
Hence, the total work required is = 3.035 kJ