<span>When the electron in a hydrogen atom transitions from a high energy state to a lower energy state, the energy lost from the electron is used to produce a photon corresponding to the loss of energy. That photon will correspond to exactly 1 wavelength. And since a hydrogen atom has only 1 electron, at any given moment, it can only produce 1 photon. And in order to simultaneously produce 4 photons for 4 spectral lines, that would require a simultaneous transition of 4 electrons which is 3 too many for a hydrogen atom.</span>
Answer:

Explanation:
Hello there!
In this case, since the radioactive reaction for the alpha emission of astatine-218 to bismith-214 involve the release of a helium atom as shown below:

Whereas the atomic number decreases by 2 and the mass number by 4 in agreement to the release of the Helium atom.
Regards!
During physical changes, matter always retains its chemical properties.
The human eye contains a molecule called 11-cis-retinal that changes conformation when struck with light of sufficient energy. The change in conformation triggers a series of events that results in an electrical signal being sent to the brain. The minimum energy required to change the conformation of 11-cis-retinal within the eye is about 164 {\rm kJ}/{\rm mol}.