When water changes into vapor, it is called evaporation. BONUS: This is formed by the boiling point of water, which is 230°F (Fahrenheit) or 110°C (Celsius).
Answer:
The minimum speed when she leave the ground is 6.10 m/s.
Explanation:
Given that,
Horizontal velocity = 1.4 m/s
Height = 1.8 m
We need to calculate the minimum speed must she leave the ground
Using conservation of energy



Put the value into the formula




Hence, The minimum speed when she leave the ground is 6.10 m/s.
Answer: 585 J
Explanation:
We can calculate the work done during segment A by using the work-energy theorem, which states that the work done is equal to the gain in kinetic energy of the object:

where Kf is the final kinetic energy and Ki the initial kinetic energy. The initial kinetic energy is zero (because the initial velocity is 0), while the final kinetic energy is

The mass is m=1.3 kg, while the final velocity is v=30 m/s, so the work done is:

Answer:
r = 4.44 m
Explanation:
For this exercise we use the Archimedes principle, which states that the buoyant force is equal to the weight of the dislodged fluid
B = ρ g V
Now let's use Newton's equilibrium relationship
B - W = 0
B = W
The weight of the system is the weight of the man and his accessories (W₁) plus the material weight of the ball (W)
σ = W / A
W = σ A
The area of a sphere is
A = 4π r²
W = W₁ + σ 4π r²
The volume of a sphere is
V = 4/3 π r³
Let's replace
ρ g 4/3 π r³ = W₁ + σ 4π r²
If we use the ideal gas equation
P V = n RT
P = ρ RT
ρ = P / RT
P / RT g 4/3 π r³ - σ 4 π r² = W₁
r² 4π (P/3RT r - σ) = W₁
Let's replace the values
r² 4π (1.01 10⁵ / (3 8.314 (70 + 273)) r - 0.060) = 13000
r² (11.81 r -0.060) = 13000 / 4pi
r² (11.81 r - 0.060) = 1034.51
As the independent term is very small we can despise it, to find the solution
r = 4.44 m