Answer:
I = 0.25 [amp]
Explanation:
To solve this problem we must use ohm's law which tells us that the voltage is equal to the product of the current by the resistance.
V = I*R
where:
V = voltage [Volt]
I = amperage or current [amp]
R = resistance [ohm]
Since all resistors are connected in series, the total resistance will be equal to the arithmetic sum of all resistors.
Rt = 2 + 8 + 14
Rt = 24 [ohm]
Now clearing I for amperage
I = V/Rt
I = 6/24
I = 0.25 [amp].
The velocity of the combination of Jackie and the bicycle is 3.328 m/s.
Explanation:
From the given data the constant kinetic energy is 3.6 J. The mass of combination is 0.65 kg. To find the velocity of the combination of Jackie and the bicycle the formula is
KE = 0.5 x mv2.
To find velocity,
V2=ke/(0.5×m)
V=
v= 3.6/(0.5×0.65)
=
v= 3.328 m/s
Hence, the velocity of the combination of Jackie and the bicycle is 3.328m/s.
Answer:
True.
Explanation:
The velocity vector is constant in magnitude but changing in direction. Because the speed is constant for such a motion, many students have the misconception that there is no acceleration. ... But the fact is that an accelerating object is an object that is changing its velocity.
Answer:
Explanation:
Kinetic energy of block will be converted into heat energy by friction .
Heat energy produced = 1/2 m v²
= .5 x 4.8 x 1.2²
= 3.456 J
85% of energy is converted into heat energy , so heat energy produced
= .85 x 3.456 = 2.9376 J .
If Q heat is given to m mass of object having s as specific heat and Δt is increase in temperature
Q = msΔt
specific heat of iron s = 462 J / kg C
Putting the values ,
2.9376 = 4.8 x 462 x Δt
Δt = 13.24 x 10⁻⁴ ⁰C.
Replenishes Freshwater resources and moderates extremes in climate :))