Answer:
The longest wavelength in vacuum for which there is constructive interference for the reflected light, λ = 3472.
Explanation:
Refractive index of Glass (given) = 1.5
For the case of a constructive interference,
2nt = (m + 1/2) λ
For case 1,
2nt = (m + 1/2) 496 nm
For case 2,
2nt = (m +1+ 1/2) 386 nm
2nt = (m+3/2) * 386 nm
(m + 1/2) 496 nm = (m+3/2) * 386 nm
m = 3
Inserting the value of m in 1.
2nt = (m + 1/2) 496 nm
2*1.5t = (3 + 1/2) * 496 nm
t = ((3 + 1/2) * 496 nm)/ 3
t = 578.6 nm
The thickness of the glass, t = 578.6 nm
b)
It is generally known that for constructive interference,
2nt = (m + 1/2) λ
λ = 2nt / ((m + 1/2))
For Longest Wavelength, m = 0
λ = 2*1.5*578.6/ (1/2)
λ = 3472 nm
We are given with the expression d = ut + 0.5 at^2 and is asked to express the equation in terms of a. First, we transpose ut to the left side, then we multiply to the equation and divide lastly the resulting equation by t^2. The final expression becomes a = 2(d-ut)/t^2.
Answer: a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
Explanation:
Acceleration is the rate of change in the velocity per time
a = change in velocity/time
a = ∆v/t
average acceleration a = (v2 -v1)/t. ....1
Given;
Final velocity v2 = 1.63m/s
Initial velocity v1 = -1.15ms
time taken t = 2.11s
Substituting into eqn 1
a = [1.63 - (-1.15)]/2.11
a = (1.63+1.15)/2.11
a = 2.78/2.11
a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
Answer:
1.4 billion light years away
Explanation:
v = Recessional velocity = 30000 km/s[/tex]
= Hubble constant =
D = Distance to the galaxy
According to Hubble's law
The galaxy is 1.4 billion light years away
James E. Hansen studied climate change