1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
3 years ago
13

This table shows the mass and volume of four different objects.

Physics
2 answers:
densk [106]3 years ago
7 0

X, Z, Y, W

ON EDG2020

suter [353]3 years ago
5 0

Answer:

Here its right but its also better than Barney's response

Explanation:

W, Y, Z, X or C

You might be interested in
Four identical capacitors are connected with a resistor in two different ways. When they are connected as in part a of the drawi
Nina [5.8K]

Answer:

T_2 = 0.592

Explanation:

Given

T_1 = 1.48s

See attachment for connection

Required

Determine the time constant in (b)

First, we calculate the total capacitance (C1) in (a):

The upper two connections are connected serially:

So, we have:

\frac{1}{C_{up}} = \frac{1}{C} + \frac{1}{C}

Take LCM

\frac{1}{C_{up}} = \frac{1+1}{C}

\frac{1}{C_{up}}= \frac{2}{C}

Cross Multiply

C_{up} * 2 = C * 1

C_{up} * 2 = C

Make C_{up} the subject

C_{up} = \frac{1}{2}C

The bottom two are also connected serially.

In other words, the upper and the bottom have the same capacitance.

So, the total (C) is:

C_1 = 2 * C_{up}

C_1 = 2 * \frac{1}{2}C

C_1 = C

The total capacitance in (b) is calculated as:

First, we calculate the parallel capacitance (Cp) is:

C_p = C+C

C_p = 2C

So, the total capacitance (C2) is:

\frac{1}{C_2} = \frac{1}{C_p} + \frac{1}{C} + \frac{1}{C}

\frac{1}{C_2} = \frac{1}{2C} + \frac{1}{C} + \frac{1}{C}

Take LCM

\frac{1}{C_2} = \frac{1 + 2 + 2}{2C}

\frac{1}{C_2} = \frac{5}{2C}

Inverse both sides

C_2 = \frac{2}{5}C

Both (a) and (b) have the same resistance.

So:

We have:

Time constant is directional proportional to capacitance:

So:

T\ \alpha\ C

Convert to equation

T\ =kC

Make k the subject

k = \frac{T}{C}

k = \frac{T_1}{C_1} = \frac{T_2}{C_2}

\frac{T_1}{C_1} = \frac{T_2}{C_2}

Make T2 the subject

T_2 = \frac{T_1 * C_2}{C_1}

Substitute values for T1, C1 and C2

T_2 = \frac{1.48 * \frac{2}{5}C}{C}

T_2 = \frac{1.48 * \frac{2}{5}}{1}

T_2 = \frac{0.592}{1}

T_2 = 0.592

Hence, the time constance of (b) is 0.592 s

8 0
2 years ago
Need Some Help Please :)
joja [24]
1. The amount of energy carried by the wave is related to the Amplitude of the wave.
2. A mechanical wave requires an initial energy input, Once this initial energy is added the wave travels through the medium until all it's energy is transferred.
6 0
2 years ago
Read 2 more answers
If a voltmeter has a less than ideal resistance, say 1 MΩ, and is used to measure the voltage across a resistor of a comparable
Naddik [55]

Answer:

As the difference between the resistance of voltmeter and the resistance being measured gets reduced the error in the reading of the voltmeter gets increased.

Explanation:

An ideal voltmeter has infinite parallel resistance and because of this it doesn't draw any current from the circuit of measurement which means it will measure the exact voltage across the elements.

But practically speaking, a real voltmeter doesn't has infinite resistance therefore, all the practical voltmeters face loading effect to some extent.

As the difference between the resistance of voltmeter and the resistance being measured gets reduced the error in the reading of the voltmeter gets increased. This is why we want to have a greater value of voltmeter resistance, ideally infinite so that the corresponding error is minimized.

Lets consider the given scenario,

A voltmeter has 1 MΩ parallel resistance and the resistance of of measuring element is 500 kΩ or 0.5 MΩ

lets suppose the supplied voltage is 1 V.

First lets assume that the voltmeter is ideal and it has infinite resistance, so in this case voltmeter will measure a voltage of 1 V across the 0.5 MΩ resistor.

Now consider the loading effect, when we connect the voltmeter across the 0.5 MΩ resistor they both become parallel so the resistance is

R = (1*0.5)/(1+0.5)

R = 0.33 MΩ

As you can see the voltmeter will see a reduced resistance and the corresponding voltage also reduces because resistance and voltage are directly proportional.

Therefore, it is preferred to have a very high parallel resistance of the voltmeter.

8 0
2 years ago
What is the magnetic force on a proton that is moving at 5.2 x 107 m/s to the
alisha [4.7K]

Answer:

1.1648×10⁻¹¹ N

Explanation:

Using

F = qvBsinФ..................... Equation 1

Where F = Force on the proton, q = charge, v = velocity, B = magnetic Field, Ф = angle between the magnetic Field and the velocity.

Note: The angle between v and B = 90°

Given: v = 5.2×10⁷ m/s, B = 1.4 T, q = 1.6×10⁻¹⁹ C, Ф = 90°

Substitute into equation 1

F = 1.6×10⁻¹⁹(5.2×10⁷)(1.4)sin90°

F = 11.648×10⁻¹²

F = 1.1648×10⁻¹¹ N.

6 0
3 years ago
Read 2 more answers
A penny is dropped from the top of a tower. It hits the ground below after 2.5 s. How tall was the tower?
pychu [463]

Answer:

C. 30.6m

Explanation:

To find the height of the tower, we are to use Newtons law of motion to solve this problem. Since the penny is falling from the top of the tower, it is acted by the acceleration due to gravity. The formula to be used is:

H=ut+\frac{1}{2}gt^2

Where H is the height of the tower, t is the time taken to hit the ground, u is the initial velocity and g is the acceleration due to gravity.

Given that, t = 2.5 s, g =9.8 m/s², u = 0 m/s (at the top of tower)

H=ut+\frac{1}{2}gt^2\\\\H=0(2.5)+ \frac{1}{2}(9.8)(2.5)^2\\\\H=30.6\ m

3 0
3 years ago
Other questions:
  • Choose the statement about Masters sports programs that is true.
    15·2 answers
  • Determine the length of a wind instrument, assuming that it is modeled as a closed tube and that the lowest sound that it can pl
    10·1 answer
  • Do all rocks stay the same throughout their life time
    13·2 answers
  • A fixed amount of gas at 25.0°c occupies a volume of 10.0 l when the pressure is 667 torr. use boyle's law to calculate the pres
    15·1 answer
  • To apply the principle of superposition to overlapping waves, you should _____ of the individual waves.
    15·1 answer
  • Where x is the distance from the leading edge along the chord c and c is equal to 1.5 m. the angle of attack is 100 . calculate
    5·1 answer
  • A football field is about 91.44 meters long. If it takes a person 35 seconds to run its length, how fast were they running in me
    8·1 answer
  • Direct current is the flow of an electric charge?
    11·1 answer
  • What is the amplitude of this wave? 13 cm<br> 21cm<br> 26 cm<br>42 cm​
    12·2 answers
  • What is a question that an engineer might have about a can opener?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!