Explanation:
Stern et al. (1999) and Stern (2000), define this variable as those general visions about the world, reflected in the beliefs that people express about their relationship with the environment and nature.हेलो फ्रेंड्स मारो किसी को इनबॉक्स कैसे करें
Here is the full question
Suppose there are 10,000 civilizations in the Milky Way Galaxy. If the civilizations were randomly distributed throughout the disk of the galaxy, about how far (on average) would it be to the nearest civilization?
(Hint: Start by finding the area of the Milky Way's disk, assuming that it is circular and 100,000 light-years in diameter. Then find the average area per civilization, and use the distance across this area to estimate the distance between civilizations.)
Answer:
1000 light-years (ly)
Explanation:
If we go by the hint; The area of the disk can be expressed as:

where D = 100, 000 ly
Let's divide the Area by the number of civilization; if we do that ; we will be able to get 'n' disk that is randomly distributed; so ;

The distance between each disk is further calculated by finding the radius of the density which is shown as follows:



replacing d =
in the equation above; we have:




The distance (s) between each civilization = 
= 2 (500 ly)
= 1000 light-years (ly)
Momentum = mass • velocity
v= 17.5/2.5
= 7 m/s
Answer: work = 1,305kJ
Explanation:
angle= 30°
force= 1,500N
distance= 1,000m
The formula for work is : Work= force x distance, however there is an angle of 30° between the direction of force applied and the direction of motion, therefore force must be decomposed to its value on the horizontal axis which is the direction of motion by using the cosine of the very angle.
W= F×cos(α)×D
W= 1,500×cos (30)×1,000
W= 1,305kJ ( kilojoules)
Here mass of the iron pan is given as 1 kg
now let say its specific heat capacity is given as "s"
also its temperature rise is given from 20 degree C to 250 degree C
so heat required to change its temperature will be given as



now if we give same amount of heat to another pan of greater specific heat
so let say the specific heat of another pan is s'
now the increase in temperature of another pan will be given as


now we have

now as we know that s' is more than s so the ratio of s and s' will be less than 1
And hence here we can say that change in temperature of second pan will be less than 230 degree C which shows that final temperature of second pan will reach to lower temperature
So correct answer is
<u>A) The second pan would reach a lower temperature.</u>