Answer:
Explanation:
General Equation of SHM is given by
![x=A\cos \omega t](https://tex.z-dn.net/?f=x%3DA%5Ccos%20%5Comega%20t)
![v=-A\omega \sin \omega t](https://tex.z-dn.net/?f=v%3D-A%5Comega%20%5Csin%20%5Comega%20t)
where x=position of particle
A=maximum Amplitude
angular frequency
t=time
At any time Total Energy is the sum of kinetic Energy and Elastic potential Energy i.e. ![\frac{1}{2}kA^2](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7DkA%5E2)
where k=spring constant
Potential Energy is given by ![U=\frac{1}{2}kx^2](https://tex.z-dn.net/?f=U%3D%5Cfrac%7B1%7D%7B2%7Dkx%5E2)
also it is given that Potential Energy(U) is equal to Kinetic Energy(K)
Total Energy![=K+U](https://tex.z-dn.net/?f=%3DK%2BU)
Total![=2U=2\times \frac{1}{2}kx^2](https://tex.z-dn.net/?f=%3D2U%3D2%5Ctimes%20%5Cfrac%7B1%7D%7B2%7Dkx%5E2)
![\frac{1}{2}kA^2=2\times \frac{1}{2}kx^2](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7DkA%5E2%3D2%5Ctimes%20%5Cfrac%7B1%7D%7B2%7Dkx%5E2)
![x=\pm \frac{A}{\sqrt{2}}](https://tex.z-dn.net/?f=x%3D%5Cpm%20%5Cfrac%7BA%7D%7B%5Csqrt%7B2%7D%7D)
at ![x=\frac{A}{\sqrt{2}}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7BA%7D%7B%5Csqrt%7B2%7D%7D)
velocity is
That depends on what type of pressure you are attempting to measure, to measure Atmospheric pressure, you would use a Barometer. To measure things like tires, you could use a Tire Pressure Gauge. For Industrial processes and boilers, you would use a Manometer. For pressure vessels, you would use a Bordon Gauge. <span />
To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,
![KE = PE](https://tex.z-dn.net/?f=KE%20%3D%20PE)
![\frac{1}{2} mv ^2 = \frac{1}{2} k A^2](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20mv%20%5E2%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20k%20A%5E2)
Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,
![A = \sqrt{\frac{mv^2}{k}}](https://tex.z-dn.net/?f=A%20%3D%20%5Csqrt%7B%5Cfrac%7Bmv%5E2%7D%7Bk%7D%7D)
Replacing,
![A = \sqrt{\frac{(0.750)(31*10^{-2})^2}{13}}](https://tex.z-dn.net/?f=A%20%3D%20%5Csqrt%7B%5Cfrac%7B%280.750%29%2831%2A10%5E%7B-2%7D%29%5E2%7D%7B13%7D%7D)
![A = 0.0744m](https://tex.z-dn.net/?f=A%20%3D%200.0744m)
(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as
![T = 2\pi \sqrt{\frac{m}{k}}](https://tex.z-dn.net/?f=T%20%3D%202%5Cpi%20%5Csqrt%7B%5Cfrac%7Bm%7D%7Bk%7D%7D)
Replacing,
![T = 2\pi \sqrt{\frac{0.750}{13}}](https://tex.z-dn.net/?f=T%20%3D%202%5Cpi%20%5Csqrt%7B%5Cfrac%7B0.750%7D%7B13%7D%7D)
![T= 1.509s](https://tex.z-dn.net/?f=T%3D%201.509s)
Now the velocity is described as,
![v = \frac{2\pi}{T} * \sqrt{A^2-x^2}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7B2%5Cpi%7D%7BT%7D%20%2A%20%5Csqrt%7BA%5E2-x%5E2%7D)
![v = \frac{2\pi}{T} * \sqrt{A^2-0.75A^2}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7B2%5Cpi%7D%7BT%7D%20%2A%20%5Csqrt%7BA%5E2-0.75A%5E2%7D)
We have all the values, then replacing,
![v = \frac{2\pi}{1.509}\sqrt{(0.0744)^2-(0.750(0.0744))^2}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7B2%5Cpi%7D%7B1.509%7D%5Csqrt%7B%280.0744%29%5E2-%280.750%280.0744%29%29%5E2%7D)
![v = 0.2049m/s](https://tex.z-dn.net/?f=v%20%3D%200.2049m%2Fs)