It would be 12W because: 6v is half of 12v so half of 24w would be 12w
your answer is.....
D. have a large atomic radius
although they also increase going from left to right so if D is incorrect, B might be your answer. it depends on context of the lesson.
Answer
given,
initial speed of hockey player= 0 m/s
mass of the helmet, m = 1.3 Kg
initial speed of the helmet, u = 0 m/s
final speed of the helmet, v = 6 m/s
recoil speed of the hockey player, v' = 0.25 m/s
we need to calculate the mass of the hockey player, M = ?
using conservation of momentum
m u + M u' = M v' + m v
initial speed of ice skater is zero
1.3 x 0 + M x 0 = M x (-0.25) + 1.3 x 6
negative sign is taken because recoil velocity is in opposite direction
0 = -0.25 M + 7.8
0.25 M = 7.8
M = 31.2 Kg
Hence, the mass of the young hockey player is equal to 31.2 Kg
In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents through each component. If two or more components are connected in parallel they have the same potential difference ( voltage) across their ends.
Answer:
A.) 27000 kgm/s
18000 kgm/s
B.) Va = 22 m/s
C.) 19800 kgm/s
25200 kgm/s
Explanation: Given that the velocity of A and B are 30 m/s and 20 m/s. And of the same mass M = 9 × 10^5g
M = 9×10^5/1000 = 900 kg
A.) Initial momentum of A
Mu = 900 × 30 = 27000 kgm/s
Initial momentum of B
Mu = 900 × 20 = 18000 kgm/s
B.) if they have an accident and then the velocity of the B is 28 m/s, find out velocity of A.
Momentum before impact = momentum after impact
Given that Vb = 28 m/s
27000 + 18000 = 900Va + 900 × 28
45000 = 900Va + 25200
900Va = 45000 - 25200
900Va = 19800
Va = 19800/900
Va = 22 m/s
C.) Momentum of A after impact
MV = 900 × 22 = 19800 kgm/s
Momentum of B after impact
MV = 900 × 28 = 25200 kgm/s