Answer:
we agree with
Edgar: The net force on the ball at the top position is 9 N. Both the tension and the weight are acting downward so you have to add them.
Explanation:
Weight of the ball is given as

so we have


now tension force at the top is given as


Now at the top position by force equation we can say that ball will have two downwards forces
1) Tension force
2) Weight of the ball
so net force on the ball is given as


So we agree with
Edgar: The net force on the ball at the top position is 9 N. Both the tension and the weight are acting downward so you have to add them.
Momentum - mass in motion
P=MV
P=(15,000 kg)(2.5 m/s)
P=37 500 kg x m/s to the north
Hope this helps
They begin to adapt into their new location. They then end up having adaptations to help them survive.
Answer:Velocity can be represented by an arrow, with the length of the arrow representing speed and the way the arrow points representing direction. Objects have the same velocity only if they are moving at the same speed and in the same direction. ... The SI unit for velocity is m/s, plus the direction the object is traveling.
Given data:
* The mass of the ball is 2 kg.
* The gravitational field strength at the surface of planet X is 5 N/kg.
Solution:
The weight of the ball on the planet X is,

where m is the mass of ball, a is the gravitational field strength,
Substituting the known values,

Thus, the weight of the ball on the surface of planet X is 10 N.