Answer:
(a) A = 0.0800 m, λ = 20.9 m, f = 11.9 Hz
(b) 250 m/s
(c) 1250 N
(d) Positive x-direction
(e) 6.00 m/s
(f) 0.0365 m
Explanation:
(a) The standard form of the wave is:
y = A cos ((2πf) t ± (2π/λ) x)
where A is the amplitude, f is the frequency, and λ is the wavelength.
If the x term has a positive coefficient, the wave moves to the left.
If the x term has a negative coefficient, the wave moves to the right.
Therefore:
A = 0.0800 m
2π/λ = 0.300 m⁻¹
λ = 20.9 m
2πf = 75.0 rad/s
f = 11.9 Hz
(b) Velocity is wavelength times frequency.
v = λf
v = (20.9 m) (11.9 Hz)
v = 250 m/s
(c) The tension is:
T = v²ρ
where ρ is the mass per unit length.
T = (250 m/s)² (0.0200 kg/m)
T = 1250 N
(d) The x term has a negative coefficient, so the wave moves to the right (positive x-direction).
(e) The maximum transverse speed is Aω.
(0.0800 m) (75.0 rad/s)
6.00 m/s
(f) Plug in the values and find y.
y = (0.0800 m) cos((75.0 rad/s) (2.00 s) − (0.300 m⁻¹) (1.00 m))
y = 0.0365 m
The student can measure a liquid's volume by using a graduated cylinder, or a beaker. Mass can be measured by first weighing an empty container on a scale, and then by adding the liquid to the container and weighing it again.
Answer:
i think its false i hope u get it correct
Answer:
Explanation:
If v be the velocity just after the rebound
Kinetic energy will be converted into potential energy
1/2 m v² = mgh
v² = 2gh
v = √ 2gh
= √ 2 x 9.8 x .96
= 4.33 m / s
Answer:
λ = 3.33 m
Explanation:
<u><em>Given:</em></u>
Frequency = f = 9 × 10⁷ Hz
Speed = v = 3 × 10⁸ m/s
<u><em>Required:</em></u>
Wavelength = λ = ?
<u><em>Formula:</em></u>
v = fλ
<u><em>Solution:</em></u>
<em>Putting the givens in the formula</em>
v = fλ
λ = 
λ = 
λ = 0.33 × 10¹
λ = 3.33 m