Answer:
F = 1200 [N]
Explanation:
Torque is defined as the product of force by Radius.

where:
T = torque = 300 [N*m]
r = radius = 50/2 = 25 [cm] = 0.25 [m]
![F=T/r\\F = 300/0.25\\F = 1200 [N]](https://tex.z-dn.net/?f=F%3DT%2Fr%5C%5CF%20%3D%20300%2F0.25%5C%5CF%20%3D%201200%20%5BN%5D)
<h2>
Answer: 469 feet</h2>
Explanation:
This problem is a good example of Vertical motion, where the main equation for this situation is:
(1)
Where:
is the height of the stone at 6s (the value we want to find)
is the initial height of the stone
is the initial velocity of the stone
is the time at which we need to find the height
is the acceleration due to gravity
Having this clear, let's find
from (1):
(2)
Finally:
This is the height of the stone at t=6s
Answer:
a)= 0.025602u
b) = 23.848MeV
c) N = 1.546 × 10¹³
Explanation:
The reaction is
²₁H + ²₁H ⇄ ⁴₂H + Q
a) The mass difference is
Δm = 2m(²₁H) - m (⁴₂H)
= 2(2.014102u) - 4.002602u
= 0.025602u
b) Use the Einstein mass energy relation ship
The enegy release is the mass difference times 931.5MeV/U
E = (0.025602) (931.5)
= 23.848MeV
c)
the number of reaction need per seconds is
N = Q/E
= 59W/ 23.848MeV

N = 1.546 × 10¹³
Here we can use the work energy theorem

here we know that

as it come to rest finally



now work done by friction force will be given as


Work done by spring force is given as



so now plug in all data above


so above is the friction coefficient