Answer:
14.0 cm
Explanation:
Draw a free body diagram of the block. There are three forces: weight force mg pulling down, elastic force k∆L pulling down, and buoyancy ρVg pushing up.
Sum of forces in the y direction:
∑F = ma
ρVg − mg − k∆L = 0
(1000 kg/m³) (4.63 kg / 648 kg/m³) (9.8 m/s²) − (4.63 kg) (9.8 m/s²) − (176 N/m) ∆L = 0
∆L = 0.140 m
∆L = 14.0 cm
Answer:
<em>b. The current in the loop always flows in a counterclockwise direction.</em>
<em></em>
Explanation:
When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.
Use the following formula for the electric field strength between two parallel plates:
E = V/d
where,
V: potential difference = 25V
d: distance between plates = 5 cm = 0.05 m
Replace the previous values of the parameters into the formula for E:

Hence, the electric field strength is 500V/m
Answer:
I. 6 cells .
II. Series connection.
Explanation:
I. Determination of the number of cells needed.
From the question given above,
Total voltage (V) = 9 V
1.5 V = 1 cell
Number of cells needed =?
The number of cells needed to make the 9V battery can be obtained as follow:
1.5 V = 1 cell
Therefore,
9 V = 9 V × 1 cell / 1.5 V
9 V = 6 cells
Thus, 6 cells of 1.5 V each is needed
II. Determination of the connection line
Total voltage (Vₜ) = 9 V
Cell 1 (V₁) = 1.5 V
Cell 2 (V₂) = 1.5 V
Cell 3 (V₃) = 1.5 V
Cell 4 (V₄) = 1.5 V
Cell 5 (V₅) = 1.5 V
Cell 6(V₆ ) = 1.5 V
For parrall connection:
Vₜ = V₁ = V₂ = V₃ = V₄ = V₅ = V₆
9 V = 1.5 V =... = 1.5 V
For series connection:
Vₜ = V₁ + V₂ + V₃ + V₄ + V₅ + V₆
9 = 1.5 + 1.5 + 1.5 + 1.5 + 1.5 + 1.5
9 V = 9 V
From the illustration above, we can see that series connection of each cells will give a total volt of 9 V unlike the parallel connection which resulted to 1.5 V.
Therfore, the cells should be arranged in series connection
It is the Ideal Gas Law.
Recall the formula for the law, PV = nRT,
n in the formula is the number of moles of the gas.
C.