Answer:
Coefficients represents no of moles while subscripts represent no of atoms.
The answer is b. radon-222. The alpha decay means that it will emit an alpha particle when decays. The alpha particle has two protons and two neutrons. So Radium(88) minus two protons will become Radon(86). And the atomic mass will become 226-4=222.
Answer: 3 times as much the potential energy
Explanation:
Potential energy is the energy possessed by an object by virtue of its position.

m= mass of object
g = acceleration due to gravity
h = height of an object
When same object with same is lifted from 10 feet to 30 feet. The height has increased 3 times , thus the potential energy will also get 3 times as much.
Answer:
12.10 mol / 1 L
Explanation:
Molarity of a substance , is the number of moles present in a liter of solution .
M = n / V
M = molarity ( unit = mol / L or M )
V = volume of solution in liter ( unit = L ),
n = moles of solute ( unit = mol ),
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
The data given is as follows -
w = 439 g
As , we known for HCl ,
m = 36.46 g/mol
V = 1 L
From the above data ,
Moles are given as -
n = w / m
n = 439 / 36.26 = 12.10 mol ,
Now , the molarity is given as ,
M = n / V
M = 12.10 mol / 1 L
M = 12.10 mol /L
Is true. Nitrogen gas behaves more like an ideal gas as the
temperature increases. Under normal conditions such as normal pressure and temperature
conditions , most real gases behave qualitatively as an ideal gas. Many
gases such as air , nitrogen , oxygen ,hydrogen , noble gases , and some heavy
gases such as carbon dioxide can be treated as ideal gases within a reasonable tolerance. Generally,
the removal of ideal gas conditions tends to be lower at higher temperatures and lower density (that is at lower pressure ), since the work made by the intermolecular
forces is less important compared to the kinetic energy<span> of the particles, and the size of the molecules is less important
compared to the empty space between them. </span><span>The ideal gas model
tends to fail at lower temperatures or at high pressures, when intermolecular
forces and intermolecular size are important.</span>