Answer:
50 m
Explanation:
F = ma
10 N = (10 kg) a
a = 1 m/s²
Given:
v₀ = 0 m/s
a = 1 m/s²
t = 10 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (0 m/s) (10 s) + ½ (1 m/s²) (10 s)²
Δx = 50 m
Answer:
A) d_o = 20.7 cm
B) h_i = 1.014 m
Explanation:
A) To solve this, we will use the lens equation formula;
1/f = 1/d_o + 1/d_i
Where;
f is focal Length = 20 cm = 0.2
d_o is object distance
d_i is image distance = 6m
1/0.2 = 1/d_o + 1/6
1/d_o = 1/0.2 - 1/6
1/d_o = 4.8333
d_o = 1/4.8333
d_o = 0.207 m
d_o = 20.7 cm
B) to solve this, we will use the magnification equation;
M = h_i/h_o = d_i/d_o
Where;
h_o = 3.5 cm = 0.035 m
d_i = 6 m
d_o = 20.7 cm = 0.207 m
Thus;
h_i = (6/0.207) × 0.035
h_i = 1.014 m
Answer:
distance between object and image = 18.9 cm
Explanation:
given data
radius of curvature = 18 cm
focal length = 1/2 radius of curvature
magnification = 40%
to find out
distance between object and image
solution
we know lens formula that is
1/f = 1/v + 1/u ....................1
here f = 18 /2 and v and u is object and image distance
and we know m = 40% = 0.40
so 0.40 = -v / u
so here v = - 0.40 u
so from equation 1
1/f = 1/v + 1/u
2/18 = - 1/0.40u + 1/u
u = -13.5 cm ..................2
and
v = -0.40 (- 13.5)
v = 5.4 cm ......................3
so from equation 2 and 3
distance between object and image = 5.4 + 13.5
distance between object and image = 18.9 cm
If the collision is inelastic, there is every possibility that the large body will drag the small stationary body along with it in the direction of the collision. Some amount of heat, light and sound energy will also be produced due to the kinetic energy of the large body. I hope the answer helps you.
Answer:
Human-driven changes in arrive utilize and arrive cover such as deforestation, urbanization, and shifts in vegetation designs moreover change the climate, coming about in changes to the reflectivity of the Soil surface (albedo), emanations from burning timberlands, urban warm island impacts and changes within the normal water cycle.