We know that the change in momentum is equals to the product of force and time that is impulse (
). Therefore, we need to determine the value of that the water is in air by using the second equation of motion,

Here, u is initial velocity which is zero.
.
Thus, impulse

From Newton`s second law,

Therefore, impulse

Given,
and 
Substituting these values, we get
Change in momentum = impulse
.
Answer:
I know someone anwsered but it would be 400M
Explanation:
i initial velocity (u)=10m/s
acceleration (a)=0
time taken (t) =40s
then distance (s)=u t +1/2 a t^2
s= u t +0 (as a is 0)
s= 10 x 40
s= 400M
Answer:
432 units
Explanation:
Let the charges be q and Q separated by a distance r. The electrostatic force , F = kqQ/r² = 72 units. If q = 2q and Q = 3Q, then the new electrostatic force is
F = k × 2q × 3Q/r² = 6kqQ/r² = 6 × 72 = 432 units
we assume the acceleration is constant. we choose the initial and final points 1.40s apart, bracketing the slowing-down process. then we have a straightforward problem about a particle under constant acceleration. the initial velocity is v xi =632mi/h=632mi/h( 1mi 1609m )( 3600s 1h )=282m/s (a) taking v xf =v xi +a x t with v xf =0 a x = t v xf −v xf = 1.40s 0−282m/s =−202m/s 2 this has a magnitude of approximately 20g (b) similarly x f −x i = 2 1 (v xi +v xf )t= 2 1 (282m/s+0)(1.40s)=198m