Answer:
1.2 M
Explanation:
If you use the dilution equation (M1V1=M2V2), you end up with (50)(12)=(500)(M2), and when you solve for M2 you get 1.2 M.
Answer:
The hydrogen ion concentration in a solution, [H+], in mol L-1, can be calculated if the pH of the solution is known.
pH is defined as the negative logarithm (to base 10) of the hydrogen ion concentration in mol L-1 pH = -log10[H+] ...
[H+] in mol L-1 can be calculated using the equation (formula): [H+] = 10-pH
Answer: ΔH for the reaction is -277.4 kJ
Explanation:
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times \Delta H(products)]-\sum [n\times \Delta H(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28products%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28reactant%29%5D)
![\Delta H=[(n_{CCl_4}\times \Delta H_{CCl_4})+(n_{HCl}\times B.E_{HCl}) ]-[(n_{CH_4}\times \Delta H_{CH_4})+n_{Cl_2}\times \Delta H_{Cl_2}]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BCCl_4%7D%5Ctimes%20%5CDelta%20H_%7BCCl_4%7D%29%2B%28n_%7BHCl%7D%5Ctimes%20B.E_%7BHCl%7D%29%20%5D-%5B%28n_%7BCH_4%7D%5Ctimes%20%5CDelta%20H_%7BCH_4%7D%29%2Bn_%7BCl_2%7D%5Ctimes%20%5CDelta%20H_%7BCl_2%7D%5D)
where,
n = number of moles
Now put all the given values in this expression, we get
![\Delta H=[(1\times -139)+(1\times -92.31) ]-[(1\times -74.87)+(1\times 121.0]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%281%5Ctimes%20-139%29%2B%281%5Ctimes%20-92.31%29%20%5D-%5B%281%5Ctimes%20-74.87%29%2B%281%5Ctimes%20121.0%5D)

Therefore, the enthalpy change for this reaction is, -277.4 kJ
Answer is: there is 2,69·10²³ atoms of bromine.
m(CH₂Br₂) = 39,0 g.
n(CH₂Br₂) = m(CH₂Br₂) ÷ M(CH₂Br₂).
n(CH₂Br₂) = 39 g ÷ 173,83 g/mol.
n(CH₂Br₂) = 0,224 mol.
In one molecule of CH₂Br₂, there is two bromine atoms, so:
n(CH₂Br₂) : n(Br) = 1 : 2.
n(Br) = 0,448 mol.
N(Br) = n(Br) · Na.
N(Br) = 0,448 mol · 6,022·10²³ 1/mol.
n(Br) = 2,69·10²³.