Answer 1) The electric field at distance r from the thread is radial and has magnitude
E = λ / (2 π ε° r)
The electric field from the point charge usually is observed to follow coulomb's law:
E = Q / (4 π ε°
)
Now, adding the two field vectors:
= {2.5 / (22 π ε° X 0.07 ) ; 0}
Answer 2)
= {2.3 / (4 2 π ε°) ( - 7/ (√(84); -12 / (√84))
Adding these two vectors will give the length which is magnitude of the combined field.
The y-component / x-component gives the tangent of the angle with the positive x-axes.
Please refer the graph and the attachment for better understanding.
Answer:
What is freezing point?
A liquid's freezing point is determined at which it turns into a solid. Corresponding to the melting point, the freezing point often rises with increasing pressure. In the case of combinations and for some organic substances, such as lipids, the freezing point is lower than the melting point. The first solid which develops when a combination freezes often differs in composition from the liquid, and the development of the solid alters the composition of the remaining liquid, typically lowering the freezing point gradually. Utilizing successive melting and freezing to gradually separate the components, this approach is used to purify mixtures.
What is melting point?
The temperature at which a purified substance's solid and liquid phases may coexist in equilibrium is referred to as the melting point. A solid's temperature goes up when heat is added to it until the melting point is achieved. The solid will then turn into a liquid with further heating without changing temperature. Additional heat will raise the temperature of the liquid once all of the solid has melted. It is possible to recognize pure compounds and elements by their distinctive melting temperature, which is a characteristic number.
The difference between freezing point and melting point:
- While a substance's melting point develops when it transforms from a solid to a liquid, a substance's freezing point happens when a liquid transforms into a solid when the heat from the substance is removed.
- When the temperature rises, the melting point can be seen, and when the temperature falls, the freezing point can be seen.
- When a solid reaches its melting point, its volume increases; meanwhile, when a liquid reaches its freezing point, its volume decreases.
- While a substance's freezing point is not thought of as a distinctive attribute, its melting point is.
- While external pressure is a significant component in freezing point, atmospheric pressure is a significant element in melting point.
- Heat must be supplied from an outside source in order to reach the melting point for such a state shift. When a material is at its freezing point, heat is needed to remove it from the substance in order to alter its condition.
<em>Reference: Berry, R. Stephen. "When the melting and freezing points are not the same." Scientific American 263.2 (1990): 68-75.</em>
Answer:
Animals must eat other plants or animals to obtain the <u>energy</u> stored in the food
Explanation:
One classification of living organisms, according to the way they obtain energy, is that of autotrophs and heterotrophs. The first group is represented by plants, which process their own nutrients from inorganic matter.
<u>Animals -heterotrophes- are unable to process their own nutrients</u>, so they must obtain them from other organisms, either plants or animals. External food sources provide them with nutrients, which contain the energy substrate needed to perform their vital functions.
Learn more:
Autotrophs and heterotrophs brainly.com/question/7695115
Answer:
Because of the formula 
Explanation:
In this problem we are describing two different processes:
- Nuclear fission occurs when a heavy, unstable nucleus breaks apart into two or more lighter nuclei
- Nuclear fusion occurs when two (or more) light nuclei fuse together producing a heavier nucleus
In both cases, the total mass of the final products is smaller than the total mass of the initial nuclei.
According to Einsten's formula, this mass difference has been converted into energy, as follows:

where:
E is the energy released in the reaction
is the mass defect, the difference between the final total mass and the initial total mass
is the speed of light
From the formula, we see that the factor
is a very large number, therefore even if the mass defect
is very small, nuclear fusion and nuclear fission release huge amounts of energy.
Flu,because it has the capacity of better fight influenza and it has no bad side effects and it can be taken easily as nasal spray or in the arm.