<span>Stratosphere. ...Mesosphere. ...Thermosphere. ...Ionosphere. ...<span>Exosphere.</span></span>
The ideal gas law:

p - pressure, n - number of moles, R - the gas constant, T - temperature, V - volume
The volume and temperature of all three containers are the same, so the pressure depends on the number of moles. The greater the number of moles, the higher the pressure.
The mass of gases is 50 g.

The greatest number of moles is in the container with Ar, so there is the highest pressure.
As reactant concentration decreases, the forward. reaction slows. As product concentration increases, the reverse reaction becomes faster. The forward. reaction will continue to slow and the reverse reaction will continue to increase until they are the same.Then the situation will be at equilibrium.
Mass of Sulphur dioxide : 256 g
<h3>Further explanation</h3>
Given
Reaction
S + O2 --> SO2 *
Required
Mass of Sulphur dioxide
Solution
mol of Sulphur (Ar=32 g/mol) :
mol = mass : Ar
mol = 128 : 32
mol = 4
From the equation, mol ratio S : SO2 = 1 : 1, so mol SO2 = 4
Mass of SO2 :
mass = mol x MW SO2
mass = 4 x 64
mass = 256 g
Answer : The rate of change of the total pressure of the vessel is, 10.5 torr/min.
Explanation : Given,
=21 torr/min
The balanced chemical reaction is,

The rate of disappearance of
= ![-\frac{1}{2}\frac{d[NO]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D)
The rate of disappearance of
= ![-\frac{d[Cl_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BCl_2%5D%7D%7Bdt%7D)
The rate of formation of
= ![\frac{1}{2}\frac{d[NOCl]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNOCl%5D%7D%7Bdt%7D)
As we know that,
=21 torr/min
So,
![-\frac{d[Cl_2]}{dt}=-\frac{1}{2}\frac{d[NO]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BCl_2%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D)
![\frac{d[Cl_2]}{dt}=\frac{1}{2}\times 21torr/min=10.5torr/min](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BCl_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%2021torr%2Fmin%3D10.5torr%2Fmin)
And,
![\frac{1}{2}\frac{d[NOCl]}{dt}=\frac{1}{2}\frac{d[NO]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNOCl%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D)
![\frac{d[NOCl]}{dt}=\frac{d[NO]}=21torr/min](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BNOCl%5D%7D%7Bdt%7D%3D%5Cfrac%7Bd%5BNO%5D%7D%3D21torr%2Fmin)
Now we have to calculate the rate change.
Rate change = Reactant rate - Product rate
Rate change = (21 + 10.5) - 21 = 10.5 torr/min
Therefore, the rate of change of the total pressure of the vessel is, 10.5 torr/min.