Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves

Where,
= mass per unit length
T = tension
Put the value into the formula


Hence, The speed of transverse waves in this string is 519.61 m/s.
Answer= 8m/s
Because total Momentum before= total momentum after
Momentum before (p=mu)
p=(4)(12)= 48
p=2(0)=0
So total momentum before=48
Momentum after (p=mu)
Masses combined —2+4=6kg
p=6u
Mb=Ma
48=6u
u=8m/s
Answer:
The answer is Heterogeneous (B) I did the lesson and took the quiz today.
Explanation:
Answer:
0.08 sin 3nt +
metre. Then calculate-
a time period
(d) Time period
(
Minitial phase
wõisplacement
7
(c) Displacement from mean position at t=
36
sec.
Explanation:
thats the answer