The answer to the first question is that plants make glucose and oxygen by taking in CO2 and H20.
The answer to the second question is having a heavier mass increases the force of a moving object. That is the Second Law of Motion, F = ma.
516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
By definition of energy efficiency, we derive an expression for the energy rate exhausted to the river (
), in megawatts:
(1)
Where:
- Efficiency.
- Electric power, in megawatts.
If we know that
and
, then the energy rate exhausted to the river is:


516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
We kindly to check this question on first law of thermodynamics: brainly.com/question/3808473
This is another one of those muddy misleading questions, followed by
a muddy group of choices from which an answer must be selected.
a). is absurd. There's no such thing as a "balanced force", only
a balanced group of forces.
b). is probably the choice the question is aiming for.
c). is not so. The engines of an airplane do plenty of work lifting the plane
off the ground, although the force of the engines is never directed upward.
d). is really awkward. The object's motion is almost never the cause of the force.
The force is almost always the cause of the object's motion.
Now for the big 800-lb gorilla in the room: No moving object needs to be involved
in order for energy to be flowing or work to be getting done.
-- A radio wave radiates through space. Straighten out a wire coat-hanger and
stick it up in the air where the radio wave can pass by it. Electrical current flows
through the wire, and you can drain the electrical energy out the bottom of it.
-- A light bulb is shining. Some distance away, something it's shining on
gets warm, because of the heat energy that has shot across to it from the
light bulb and soaked into it.
-- A lightning bolt jumps from the ground to a passing cloud. Or, if you feel
more comfortable with it, a lightning bolt jumps from a cloud to the ground.
It doesn't matter. Either way, there's enough energy splashing around to
ignite houses, zap TVs and computers, melt concrete, vaporize water, and
light up a city. Although nothing is moving.
Answer:
W = 55.12 J
Explanation:
Given,
Natural length = 6 in
Force = 4 lb, stretched length = 8.4 in
We know,
F = k x
k is spring constant
4 = k (8.4-6)
k = 1.67 lb/in
Work done to stretch the spring to 10.1 in.

![W = \dfrac{k}{2}[x^2]_6^{10.1}](https://tex.z-dn.net/?f=W%20%3D%20%5Cdfrac%7Bk%7D%7B2%7D%5Bx%5E2%5D_6%5E%7B10.1%7D)

W = 55.12 J
Work done in stretching spring from 6 in to 10.1 in is equal to 55.12 J.
the answer would be B. the back emf increases, and the current drawn from the socket increases
more current is needed to make the motor move, like when you try to self crank a motor and the back wires are touching its harder to crank. and the emf increases since more current is being drawn in, strengthening the emf or increasing the emf