100 MHz = 100,000,000 Hz = 10^8<span> Hz
And using basic conversions between frequencies, I've determined that the wavelength is roughly 3 meters.</span>
Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s
Hello :))
Mass is dependent on the inertia of an object:))
Hope this helps
Under the assumption that the three rocks are dropped from the same height, they will hit the ground at the same speed. The gravity of Earth is virtually the same for any object that is small compared to the size of the Earth. The acceleration will change with the distance from the Earth, but this change is so small for the range of heights we work with (consider the range of heights from sea level to the tip of Mount Everest) that we can take the average value and assume it to be constant. This constant value of acceleration due to Earth's gravity is 9.80665m/s²
Because the objects fall under the same constant acceleration, they will hit the ground at the same speed.
A rain gauge! Hope this helps!