Answer:
If the frequency of the motion of a simple harmonic oscillator is doubled , then maximum speed of the oscillator changes by the factor 2
Explanation:
We know that in a simple harmonic oscillator the maximum speed is given by
= 
Here A is amplitude which is constant , so from above equation we see that maximum speed is directly proportional to
of the oscillation .
Since 
= 2
Where
is the maximum speed when frequency is doubled .
Answer:
The answer is C.
Explanation:
I guessed and it was right
Answer:
a) 2.85 kW
b) $ 432
c) $ 76.95
Explanation:
Average price of electricity = 1 $/40 MJ
Q = 20 kW
Heat energy production = 20.0 KJ/s
Coefficient of performance, K = 7
also
K=(QH)/Win
Now,
Coefficient of Performance, K = (QH)/Win = (QH)/P(in) = 20/P(in) = 7
where
P(in) is the input power
Thus,
P(in) = 20/7 = 2.85 kW
b) Cost = Energy consumed × charges
Cost = ($1/40000kWh) × (16kW × 300 × 3600s)
cost = $ 432
c) cost = (1$/40000kWh) × (2.85 kW × 200 × 3600s) = $76.95
Atomic number=Proton count
Atomic mass=Proton count+ neutron count
Neuton Count=Atomic mass-Proton count
Proton count=Atomic number=27
Mass number=74
Neuton count= 74-27=47
Answer:
a) Revolutions per minute = 2.33
b) Centripetal acceleration = 11649.44 m/s²
Explanation:
a) Angular velocity is the ratio of linear velocity and radius.
Here linear velocity = 72 m/s
Radius, r = 0.89 x 0. 5 = 0.445 m
Angular velocity

Frequency

Revolutions per minute = 2.33
b) Centripetal acceleration

Here linear velocity = 72 m/s
Radius, r = 0.445 m
Substituting

Centripetal acceleration = 11649.44m/s²