Friction force is when you rub 2 things together and they get warm. Motion, on the other hand, is if your walking along the sidewalk - you hardly get warmer -------
Unless it's a colder day outside and you're walking SO you decide to rub your hands together to get warm, but if you were just walking , its motion and only motion - no friction :):)
Respiratory and circulatory
Answer:
Explanation:
Heat capacity A = 3 x heat capacity of B
initial temperature of A = 2 x initial temperature of B
TA = 2 TB
Let T be the final temperature of the system
Heat lost by A is equal to the heat gained by B
mass of A x specific heat of A x (TA - T) = mass of B x specific heat of B x ( T - TB)
heat capacity of A x ( TA - T) = heat capacity of B x ( T - TB)
3 x heat capacity of B x ( TA - T) = heat capacity of B x ( T - TB)
3 TA - 3 T = T - TB
6 TB + TB = 4 T
T = 1.75 TB
Answer:
Balanced.
Explanation:
A Balanced Chemical equation is a scientific term that describes a chemical equation that has the same number of atoms on each side of the equation.
Hence, when the number of atoms on the right side of a chemical equation matches the number of atoms on the left side of a chemical equation, it is said to be BALANCED.
Answer:
a)
Weight in Air = 0.3N
Weight in Water = 0.25N
Weight in Liquid = 0.24N.
Upthrust /Buoyant Force = Weight in Air – Weight in Fluid(Water in this case)
= 0.3 – 0.25
= 0.5N.
b) R.D of Body = Density of Body/Density of Standard Fluid(Water).
There's a Derived Formula for RD.
I'm gonna Apply it here.
Ask me for the derivation in the Comment section if you need it.
RD = α/ρ = (Weight in Air) / (Upthrust Force)
Where
α = density of the Body(or reference substance)
ρ = density of standard fluid (water)
= 0.3/0.05 = 6.
c) RD of Liquid = (Density of Liquid) /(Density of standard Fluid(water)
Or we just go by that formula
RD of Liquid = Weight in Air/Upthrust(In Liquid)
We'll be using the Upthrust in that Liquid now.
= 0.3 – 0.24 = 0.06
RD = 0.3/0.06 = 5.