I'm probably going to have to say C. E as it seems the steepest right around there. If I'm wrong on that, it has to be B. B
Answer:
Frequency is <u>the number of waves</u> that move past a point during a specific amount of time. Frequency is measured in <u>Hertz</u>, and is classified as high, medium, or low. Frequency is interpreted as the <u>pitch</u> of a sound. Intensity refers to the <u>loudness</u> of a sound and is measured in <u>decibels</u>. Louder sounds <u>increase</u> the rate of nerve signals relayed to the brain.
Explanation:
Answer:
D.
Explanation:
To solve the problem it is necessary to apply the concepts of Destructive and constructive interference. The constructive interference in tin film is given by

Where,
t = thickness
Wavelenght
m= is an integer
n= film/refractive index
We use this equaton because phase change is only present for gasoline air interface, but not at the gasoline-water interface. <em>The minimum t only would be when the value of m=0 then</em>



Therefore the correct answer is D. The minimum thickness of the film to see ab right reflection is 100nm
Answer:
g = 5 m/s square
Explanation:
Weight(W), Mass(m), Gravity(g)
W = mg
1,000N = 200g
g = 1000/200
g = 5 m/s square
Answer:
Rectangular path
Solution:
As per the question:
Length, a = 4 km
Height, h = 2 km
In order to minimize the cost let us denote the side of the square bottom be 'a'
Thus the area of the bottom of the square, A = 
Let the height of the bin be 'h'
Therefore the total area, 
The cost is:
C = 2sh
Volume of the box, V =
(1)
Total cost,
(2)
From eqn (1):

Using the above value in eqn (1):


Differentiating the above eqn w.r.t 'a':

For the required solution equating the above eqn to zero:


a = 4
Also

The path in order to minimize the cost must be a rectangle.