Answer:
1.F is the electrostatic force between charges (in Newtons),
2.q₁ is the magnitude of the first charge (in Coulombs),
3.q₂ is the magnitude of the second charge (in Coulombs),
4.r is the shortest distance between the charges (in m),
5.ke is the Coulomb's constant. It is equal to 8.98755 × 10⁹ N·m²/C² .
Answer:
In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component
However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy
Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system
The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Explanation:
<span>The direction of the electric field's vibration</span>
One well-known application of density is determining whether or not an object will float on water. If the object's density is less than the density of water, it will float; if its density is less than that of water, it will sink.In fact, submarines dive below the surface of the water by emptying their ballast tanks
Answer: B) 2.5 m/s
Explanation: Find the average of the time and distance, and see how far they go in only 1 second.
1 + 2 + 3 + 4 + 5 = 15
15 divided by 5 = 3
3 seconds
2 + 5 + 7 + 10 + 12 = 36
36 divided by 5 = 7.2
7.2m per 3 seconds.
7.2 divided by 3 = 2.4
Therefore, the answer is technically 2.4m/s