144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
<h3>What is Ideal Gas Law ? </h3>
The ideal gas law states that the pressure of gas is directly proportional to the volume and temperature of the gas.
PV = nRT
where,
P = Presure
V = Volume in liters
n = number of moles of gas
R = Ideal gas constant
T = temperature in Kelvin
Here,
P = 1 atm [At STP]
R = 0.0821 atm.L/mol.K
T = 273 K [At STP]
Now first find the number of moles
F₂ + CaBr₂ → CaF₂ + Br₂
Here 1 mole of F₂ reacts with 1 mole of CaBr₂.
So, 199.89 g CaBr₂ reacts with = 1 mole of F₂
1.28 g of CaBr₂ will react with = n mole of F₂

n = 0.0064 mole
Now put the value in above equation we get
PV = nRT
1 atm × V = 0.0064 × 0.0821 atm.L/mol.K × 273 K
V = 0.1434 L
V ≈ 144 mL
Thus from the above conclusion we can say that 144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
Learn more about the Ideal Gas here: brainly.com/question/20348074
#SPJ4
Hello.
Active site of the enzyme.
Have a nice day
Answer:
The value of y = 5.1478
Explanation:
The linear equation is an equation obtained when a linear polynomial is equated to zero. When the solution obtained on solving the equation is substituted in the equation in place of the unknown, the equation gets satisfied.
The given equation: 5.3 x 10- (y)(2y) = 0
⇒ 53 - 2y² = 0
⇒ 2y² = 53
⇒ y² = 53 ÷ 2 = 26.5
⇒ y = √26.5 = 5.1478
Answer:
Coating a material with metal
(SInce the glasses will be coated with gold.)