"High temperatures make the gas molecules move more quickly" is the one sentence among all the choices given in the question that most likely explains why this reaction is carried out at high temperature. The correct option among all the options that are given in the question is the third option or option "C".
The answers that fit the blanks are SMALL and LITTLE, respectively. The particles or molecules or fas are small which makes it loose and easily moves around, and these only exert little attraction for other gas particles. The answer for this would be option D.
<u>Answer:</u>
2400 mL
<u>Explanation:</u>
According to this equation, the stoichiometric ratio between and for the complete reaction is 1:2.
We know that the number of moles of can be calculated using the mole formula. (<em>number of moles = mass / molar mass</em>)
Moles of Calcium = = 1.5 mol
So the moles of = = 3.0 mol
<em>Volume of HCl solution = Moles of HCl/ concentration of HCl</em>
Volume of HCl solution = = 2400 mL
Explanation:
this is the one i found.....
Answer:
0.29mol/L or 0.29moldm⁻³
Explanation:
Given parameters:
Mass of MgSO₄ = 122g
Volume of solution = 3.5L
Molarity is simply the concentration of substances in a solution.
Molarity = number of moles/ Volume
>>>>To calculate the Molarity of MgSO₄ we find the number of moles using the mass of MgSO₄ given.
Number of moles = mass/ molar mass
Molar mass of MgSO₄:
Atomic masses: Mg = 24g
S = 32g
O = 16g
Molar mass of MgSO₄ = [24 + 32 + (16x4)]g/mol
= (24 + 32 + 64)g/mol
= 120g/mol
Number of moles = 122/120 = 1.02mol
>>>> From the given number of moles we can evaluate the Molarity using this equation:
Molarity = number of moles/ Volume
Molarity of MgSO₄ = 1.02mol/3.5L
= 0.29mol/L
IL = 1dm³
The Molarity of MgSO₄ = 0.29moldm⁻³