The electrical force acting on a charge q immersed in an electric field is equal to

where
q is the charge
E is the strength of the electric field
In our problem, the charge is q=2 C, and the force experienced by it is
F=60 N
so we can re-arrange the previous formula to find the intensity of the electric field at the point where the charge is located:
It takes the shape of the cup and it can be sucked through a straw
Answer:
-0.912 m/s
Explanation:
When the package is thrown out, momentum is conserved. The total momentum after is the same as the total momentum before, which is 0, since the boat was initially at rest.

where
are the mass of the child, the boat and the package, respectively.
are the velocity of the package and the boat after throwing.



Mars.
Water exists as small amounts of ice on Mars and as water vapor. It is suspected that Mars used to have flowing water on it, but that there is none left now.
Answer: The Electrostatic force of attraction or repulsion between two charges shows that the Newton's third law applies to electrostatic forces.
Explanation: Consider two Oppositely charged charges separated by distance d.
The electrostatic force exerted by charge 1 on charge 2 is.
By Coulomb's Law :
F1 = k
.....................................(1)
The electrostatic force exerted by charge 2 on charge 1 is.
F2 = - k
................................. (2)
negative sign shows that force are in opposite direction.
From Equation 1 and 2
F1 = - F2
Which implies Newton Third law.