Answer:
D. All of the above
Explanation:
E = MC² is a common equation in physics.
E is energy
M is mass
C is the speed of light
The law was stated by Albert Einstein.
- From this law, it was shown that energy is released when matter is destroyed.
- Mass and energy are equivalent as seen in nuclear reactions where mass is converted to energy.
- Mass and energy is usually conserved in any process and this is a subtle modification of the law of conservation of matter and energy.
- Most of these postulates apply to nuclear reactions which generally do not follow some precepts of chemical laws.
The answer is C : 15.7 m/s
Use the idea of : momentum before collision = momentum after collision
Before collision;
For car:mass=1.1×10^3, velocity=22
For truck:mass=2.3×10^3, velocity=0
After collision;
For car:mass=2.3×10^3, velocity=-11
For truck:mass=2.3×10^3, velocity=V
(1.1×10^3 × 22) + (2.3×10^3 × 0) = (1.1×10^3 × -11) + (2.3×10^3 × V)
24200 = -12100 + 2.3×10^3V
2.3×10^3V = 36300
V = 15.7 m/s
55.9 kPa; Variables given = volume (V), moles (n), temperature (T)
We must calculate <em>p</em> from <em>V, n</em>, and <em>T</em>, so we use <em>the Ideal Gas Law</em>:
<em>pV = nRT</em>
Solve for <em>p</em>: <em>p = nRT/V</em>
R = 8.314 kPa.L.K^(-1).mol^(-1)
<em>T</em> = (265 + 273.15) K = 538.15 K
<em>V</em> = 500.0 mL = 0.5000 L
∴ <em>p</em> = [6.25 x 10^(-3) mol x 8.314 kPa·L·K^(-1)·mol^(-1) x 538.15 K]/(0.5000 L) = 55.9 kPa
Answer:
c. decarboxylation of an a-keto acid.
Explanation:
Decarboxylation refers to the removal of the carboxyl group from a carboxylic acid and thus releasing carbon dioxide. Decarboxylases are enzymes that speed up the removal of the carboxyl group from acids. These reactants could be amino acids, alpha-keto acids, and beta-keto acids. Biotin is known to catalyze the decarboxylation of malonyl CoA to acetyl CoA during fatty acid synthesis.
Malonyl CoA is converted to acetyl CoA after decarboxylation assisted by biotin also known as Vitamin H. Alpha keto acids are involved in fatty acids synthesis and Malonyl CoA is an alpha-keto acid because the keto group is located in the first carbon near the carboxylic acid group. Keto acids have both a carboxyl group and a ketone group.
It is called exothermic reaction because it releases heat and light and it is called combustion reaction because it is reacting and is being oxidised by O2 to MgO.
It can also be called as oxidation reaction since Mg is oxidised to MgO.