Answer:
ionic bonding occurs when unstable atoms donates one or more valence electrons to a unstable atom
Explanation:
Answer:
This question is incomplete.
Explanation:
This question is incomplete because of the absence of given mass and volume, however, the steps below will help solve the completed question. The molarity (M) of a solution is the number of moles of solute per liter of solvent. The formula is illustrated below;
Molarity = number of moles (n) / volume (in liter or dm³)
To calculate the number of moles of NaC₂H₃O₂, we say
number of moles (n) =
given or measured mass of NaC₂H₃O₂ ÷ molar mass of NaC₂H₃O₂
The volume of the solvent must be in liter (same as dm³). Thus, to convert mL to liter, we divide by 1000
The unit for Molarity is M (Molar concentration), mol/L or mol/dm³
Answer:
The concentration of this solution in units of pounds per gallon is 
Explanation:
Units of measurement are established models for measuring different quantities. The conversion of units is the transformation of a quantity, expressed in a certain unit of measure, into an equivalent one, which may or may not be of the same system of units.
In this case, the conversion of units is carried out knowing that 1 μg are equal to 2.205*10⁻⁹ Lb and 1 mL equals 0.00022 Gallons. So

If 1 μg equals 2.205*10⁻⁹ lb, 2.77 μg how many lb equals?

lb=6.10785*10⁻⁹
So, 2.77 μg= 6.10785*10⁻⁹ lb
Then:

You get:

<u><em>The concentration of this solution in units of pounds per gallon is </em></u>
<u><em></em></u>
<span>You can find
the number of moles in equilibrium if you got the chemical reaction correctly. Make
sure that you got the exact chemical formula of the substance that is reacting
and the yielded product. If you got them, balance the chemical reaction. If the
chemical reaction is balanced, the system is in equilibrium. You can find the
number of moles in equilibrium at the coefficients of the chemical substances
you are balancing. For example, N2 + 3H2 -> 2NH3. The number of moles of N2
is 1, H2 is 3 and NH3 is 2.</span>
Answer:
it will first star out slow them become fast by mass and speed
Explanation:
speed and mass = fast