Answer:
Q = 0.061 = Kc
Explanation:
Step 1: Data given
Temperature = 500 °C
Kc=0.061
1.14 mol/L N2
5.52 mol/L H2
3.42 mol/L NH3
Step 2: Calculate Q
Q=[products]/[reactants]=[NH3]²/ [N2][H2]³
If Qc=Kc then the reaction is at equilibrium.
If Qc<Kc then the reaction will shift right to reach equilibrium.
If Qc>Kc then the reaction will shift left to reach equilibrium.
Q = (3.42)² / (1.14 * 5.52³)
Q = 11.6964/191.744
Q = 0.061
Q = Kc the reaction is at equilibrium.
Answer:
To release 7563 kJ of heat, we need to burn 163.17 grams of propane
Explanation:
<u>Step 1</u>: Data given
C3H8 + 5O2 -----------> 3CO2 + 4H2O ΔH° = –2044 kJ
This means every mole C3H8
Every mole of C3H8 produces 2044 kJ of heat when it burns (ΔH° is negative because it's an exothermic reaction)
<u>Step 2: </u>Calculate the number of moles to produce 7563 kJ of heat
1 mol = 2044 kJ
x mol = 7563 kJ
x = 7563/2044 = 3.70 moles
To produce 7563 kJ of heat we have to burn 3.70 moles of C3H8
<u>Step 3: </u>Calculate mass of propane
Mass propane = moles * Molar mass
Mass propane = 3.70 moles * 44.1 g/mol
Mass propane = 163.17 grams
To release 7563 kJ of heat, we need to burn 163.17 grams of propane
Answer:
simple
Explanation:
The glow stick's outer plastic tube holds a solution of an oxalate ester and an electron-rich dye along with a glass vial filled with a hydrogen peroxide solution. ... Glow sticks light up when oxalate esters react with hydrogen peroxide to form a high-energy intermediate
Answer:
24.309 g/mol
Explanation:
To get the atomic mass, all we have to do is calculate with the masses of the three isotope, the real quantity present, taking account of the percent and then, do a sum of these three values. Like a pondered media.
For the first isotope:
23.99 * (78.99/100) = 18.95 g/mol
For the second isotope:
24.99 * (10/100) = 2.499 g/mol
For the last isotope:
25.98 * (11.01/100) = 2.86 g/mol
Now, let's sum all three together
AW = 18.95 + 2.499 + 2.86
AW = 24.309 g/mol
Answer:
hlo please help me to do my question