Answer:
No
Explanation:
In ideal solutions, the interactions between solute - solvent are approximately the same as those of solute - solute and solvent - solvent, that is the interactions are to be practically indistintiguishable after disolution.
The moment we have a release of energy (the solution feels warm) we are to conclude that there are strong interactions between the water and methanol molecules so we would expect the solution to be non ideal.
The reason for the interactions is the presence of hydrogen bonds between methanol and water.
Do you mean h=7.0+10? If so your answer is 70.
Answer:
See attached picture.
Explanation:
Hello,
In this case, for the given name, you can verify the structure on the attached picture, wherein you can see verify the presence of both the ethyl and methyl radicals at the third carbon as well as the triple bond at the first carbon.
Best regards.
<span>write out the balance equation
3NaOh+H3PO4->Na3PO4+3H2O
You are given everything needed to calculate
q=heat transfer=2.2*10^2,
H3PO4 moles= 1.5*10^-3,
NaOH moles=5.0*10^-3
equation is deltaHneutraliztion=q/Moles of limiting reagent
H3PO4 is limiting reagent because lowest moles, and is used up first
Now plug in variables
DeltaH=2.2*10^2(1.5*10^3)= 146.67kj/mole
Notice we had to convert J to kj,</span>
Answer:

Explanation:
Hello,
In this case, since the reaction between potassium hydroxide and nitric acid is:

We can see a 1:1 mole ratio between the acid and base, therefore, for the titration analysis, we find the following equality at the equivalence point:

That in terms of molarities and volumes is:

Thus, solving the molarity of the base (KOH), we obtain:

Regards.