Answer:
The articles appearing under "Milestones in Physics" will give an insight into special events or situations that have been decisive for the evolution of Physics
At the player's maximum height, their velocity is 0. Recall that

which tells us the player's initial velocity
is

The player's height at time
is given by

so we find their airtime to be

So,
GPE (graviational potential energy) = mass x g x height
GPE is depends on where zero height is defined. In this situation, we define h = 0 as the initial height.



The builder has gained 18.375 kJ of PE.
Answer:
5880lb-ft of work is done
Explanation:
The length of the heavy rope is given as 60ft and the weight per length is 0.7lb/ft.
Therefore, the total weight of the heavy rope is
60×0.7 =42lb.
The work done in pulling the heavy rope to the top of the building is w = Fd.
Where
F is force is measured in pounds;42lb
d is distance through which the heavy rope is to be pulled measured in feet; 140ft
w= 42lb×140ft= 5880lb-ft
Answer:
v = √[gR (sin θ - μcos θ)]
Explanation:
The free body diagram for the car is presented in the attached image to this answer.
The forces acting on the car include the weight of the car, the normal reaction of the plane on the car, the frictional force on the car and the net force on the car which is the centripetal force on the car keeping it in circular motion without slipping.
Resolving the weight into the axis parallel and perpendicular to the inclined plane,
N = mg cos θ
And the component parallel to the inclined plane that slides the body down the plane at rest = mg sin θ
Frictional force = Fr = μN = μmg cos θ
Centripetal force responsible for keeping the car in circular motion = (mv²/R)
So, a force balance in the plane parallel to the inclined plane shows that
Centripetal force = (mg sin θ - Fr) (since the car slides down the plane at rest, (mg sin θ) is greater than the frictional force)
(mv²/R) = (mg sin θ - μmg cos θ)
v² = R(g sin θ - μg cos θ)
v² = gR (sin θ - μcos θ)
v = √[gR (sin θ - μcos θ)]
Hope this Helps!!!