1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nonamiya [84]
2 years ago
9

A net force of 345 N accelerates a boy on a sled at 3.2 m/s^2 . What is combined mass of the sled

Physics
1 answer:
Daniel [21]2 years ago
6 0

Answer:

Mass, m = 26.54kg

Explanation:

Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.

Mathematically, net force is given by the formula;

Fnet = Fapp + Fg

Where;

  • Fnet is the net force
  • Fapp is the applied force
  • Fg is the force due to gravitation

<u>Given the following data;</u>

Net force, Fnet = 345

Acceleration, a = 3.2m/s²

<u>To find mass;</u>

Fnet = Fapp + Fg

Fnet = ma + mg

Fnet = m(a+g)

m = Fnet/(a+g)

We know that acceleration due to gravity, g = 9.8m/s²

Substituting into the equation, we have;

m = 345/(3.2 + 9.8)

m = 345/13

Mass, m = 26.54kg

You might be interested in
What is happening if energy input remains constant and voltage remains the same in a circuit, but the current decreases?
atroni [7]
The resistance of the circuit will definitely increase. This can be proved by the Ohm's Law where it is said that the potential difference across a conductor is directly proportional to the current and the proportionality constant is known as the resistance. The law is expressed as V = IR. As we can see, when the voltage remains constant while the current decreases then the resistance will increase.<span />
3 0
2 years ago
A resistor with r = 340 ω and an inductor are connected in series across an ac source that has voltage amplitude 490 v. The rate
Arada [10]

The value of impedance Z of the circuit, when the rate at which electrical energy is dissipated in the resistor is 316 w, is 508 ohms.

<h3>What is impedance Z of the circuit?</h3>

The impedance Z of the circuit is the ratio of voltage amplitude to the maximum current.

Z=\dfrac{V}{I}

Here, <em>V </em>is voltage amplitude and<em> I</em> maximum current.

A resistor with R = 300 Ω and an inductor are connected in series across an ac source that has voltage amplitude 490V. The rate at which electrical energy is dissipated in the resistor is 316 W.

The rate at which electrical energy is dissipated in the resistor is the product of the resistance and the square of current. Thus,

316=340\times I^2\\I=\sqrt{\dfrac{316}{340}}\\I=0.964\rm\; A

The impedance Z of the circuit is,

Z=\dfrac{V}{I}\\Z=\dfrac{490}{0.964}\\Z=508\rm\; ohm

Thus, the value of impedance Z of the circuit, when the rate at which electrical energy is dissipated in the resistor is 316 w, is 508 ohms.

Learn more about the impedance Z of the circuit here:

brainly.com/question/24225360

#SPJ4

5 0
1 year ago
The function x = (1.2 m) cos[(3πrad/s)t + π/5 rad] gives the simple harmonic motion of a body. At t = 9.7 s, what are the (a) di
nlexa [21]

Answer and Explanation:

Let:

x(t)=Acos(\omega t+ \phi)

The equation representing a simple harmonic motion, where:

x=Displacement\hspace{3}from\hspace{3}the\hspace{3}equilibrium\hspace{3}point\\A=Amplitude \hspace{3}of\hspace{3} motion\\\omega= Angular \hspace{3}frequency\\\phi=Initial\hspace{3} phase\\t=time

As you may know the derivative of the position is the velocity and the derivative of the velocity is the acceleration. So we can get the velocity and the acceleration by deriving the position:

v(t)=\frac{dx(t)}{dt} =- \omega A sin(\omega t + \phi)\\\\a(t)=\frac{dv(t)}{dt} =- \omega^2 A cos(\omega t + \phi)

Also, you may know these fundamental formulas:

f=\frac{\omega}{2 \pi} \\\\T=\frac{2 \pi}{\omega}

Now, using the previous information and the data provided by the problem, let's solve the questions:

(a)

x(9.7)=1.2 cos((3 \pi *(9.7))+\frac{\pi}{5} ) \approx -0.70534m

(b)

v(9.7)=-(3\pi) (1.2) sin((3\pi *(9.7))+\frac{\pi}{5} ) \approx 9.1498 m/s

(c)

a(9.7)=-(3 \pi)^2(1.2)cos((3\pi*(9.7))+\frac{\pi}{5} )\approx -62.653m/s^2

(d)

We can extract the phase of the motion, the angular frequency and the amplitude from the equation provided by the problem:

\phi = \frac{\pi}{5}

(e)

f=\frac{\omega}{2 \pi} =\frac{3\pi}{2 \pi} =\frac{3}{2} =1.5 Hz

(f)

T=\frac{2 \pi}{\omega} =\frac{2 \pi}{3 \pi} =\frac{2}{3} \approx 0.667s

8 0
2 years ago
Read 2 more answers
A person jumps out a fourth-story window 14 m above a firefighter safety net. The survivor stretches the net 1.8 m before coming
Monica [59]

Answer:

The deceleration is  a =  - 76.27 m/s^2

Explanation:

From the question we are told that

   The height above  firefighter safety net is H  = 14 \ m

   The length by which the net is stretched is s =  1.8 \ m

   

From the law of energy conservation

    KE_T + PE_T =  KE_B + PE_B

 Where KE_T is the kinetic energy of the person before jumping which equal to zero(because to kinetic energy at maximum height )

   and  PE_T is the potential energy of the before jumping  which is mathematically represented at

          PE_T  = mg H

and  KE_B is the kinetic energy of the person just before landing on the safety net  which is mathematically represented at

        KE_B = \frac{1}{2} m v^2

and  PE_B is the potential energy of the person as he lands on the safety net which has a value of zero (because it is converted to kinetic energy )

   So the above equation becomes

          mgH =  \frac{1}{2} m v^2

=>           v =  \sqrt{2 gH }

    substituting values

                v =  16.57 m/s

Applying the equation o motion

             v_f =  v  + 2 a s

Now the final velocity is zero because the person comes to rest

      So

         0 = 16.57 + 2 * a * 1.8

            a =  - \frac{16.57^2 }{2 * 1.8}

            a =  - 76.27 m/s^2

         

         

4 0
2 years ago
What are non examples of light years?
abruzzese [7]
Hi , here are some examples: An astronomical unit A parsec A meter
5 0
3 years ago
Read 2 more answers
Other questions:
  • It is more difficult to start moving a heavy carton from rest than it is to keep pushing it with a constant velocity because
    13·2 answers
  • Nonmetals are usually _____ which means that they evaporate easily.
    7·2 answers
  • In musical language, mezzo forte (mf) signals that the music's volume should be
    8·1 answer
  • In 1898, the world land speed record was set by Gaston Chasseloup-Laubat driving a car named Jeantaud. His speed was 39.24 mph (
    5·1 answer
  • Which of the following is a vector quantity?
    14·1 answer
  • Which color of light has a longer wavelength than yellow?
    5·2 answers
  • Which describes the current model of the atom ?
    13·1 answer
  • A refrigerator draws 4.5 A of current while operating on a 120-V power line. If the refrigerator runs 50% of the time and electr
    5·1 answer
  • What happens to Roberto’s kinetic energy when he runs twice as fast?
    6·1 answer
  • Meteorologists are interested in the relationship between minimum pressure and maximum wind speed
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!