The resistance of the circuit will definitely increase. This can be proved by the Ohm's Law where it is said that the potential difference across a conductor is directly proportional to the current and the proportionality constant is known as the resistance. The law is expressed as V = IR. As we can see, when the voltage remains constant while the current decreases then the resistance will increase.<span />
The value of impedance Z of the circuit, when the rate at which electrical energy is dissipated in the resistor is 316 w, is 508 ohms.
<h3>What is impedance Z of the circuit?</h3>
The impedance Z of the circuit is the ratio of voltage amplitude to the maximum current.

Here, <em>V </em>is voltage amplitude and<em> I</em> maximum current.
A resistor with R = 300 Ω and an inductor are connected in series across an ac source that has voltage amplitude 490V. The rate at which electrical energy is dissipated in the resistor is 316 W.
The rate at which electrical energy is dissipated in the resistor is the product of the resistance and the square of current. Thus,

The impedance Z of the circuit is,

Thus, the value of impedance Z of the circuit, when the rate at which electrical energy is dissipated in the resistor is 316 w, is 508 ohms.
Learn more about the impedance Z of the circuit here:
brainly.com/question/24225360
#SPJ4
Answer and Explanation:
Let:

The equation representing a simple harmonic motion, where:

As you may know the derivative of the position is the velocity and the derivative of the velocity is the acceleration. So we can get the velocity and the acceleration by deriving the position:

Also, you may know these fundamental formulas:

Now, using the previous information and the data provided by the problem, let's solve the questions:
(a)

(b)

(c)

(d)
We can extract the phase of the motion, the angular frequency and the amplitude from the equation provided by the problem:

(e)

(f)

Answer:
The deceleration is 
Explanation:
From the question we are told that
The height above firefighter safety net is 
The length by which the net is stretched is 
From the law of energy conservation

Where
is the kinetic energy of the person before jumping which equal to zero(because to kinetic energy at maximum height )
and
is the potential energy of the before jumping which is mathematically represented at

and
is the kinetic energy of the person just before landing on the safety net which is mathematically represented at

and
is the potential energy of the person as he lands on the safety net which has a value of zero (because it is converted to kinetic energy )
So the above equation becomes

=> 
substituting values

Applying the equation o motion

Now the final velocity is zero because the person comes to rest
So



Hi , here are some examples:
An astronomical unit
A parsec
A meter