Answer:


Explanation:
From the question we are told that
Initial velocity of 60 m/s
Wind speed 
Generally Resolving vector mathematically

Generally the equation Pythagoras theorem is given mathematically by



Therefore Resultant velocity (m/s)

b)Resultant direction
Generally the equation for solving Resultant direction

Therefore


Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>
It is wavelength i think so!!!!
Answer:
Push - The most common form of force is a push through physical contact (like a lawnmower or shopping cart)
Pull - You can apply a force by directly pulling on an object (like pulling a wagon)
Explanation:
Answer:
-1.43 m/s relative to the shore
Explanation:
Total momentum must be conserved before and after the run. Since they were both stationary before, their total speed, and momentum, is 0, so is the total momentum after the run off:
where
are the mass of the swimmer and raft, respectively.
are the velocities of the swimmer and the raft after the run, respectively. We can solve for
So the recoil velocity that the raft would have is -1.43 m/s after the swimmer runs off, relative to the shore