Explanation:
i) center of gravity (or mass)
ii) m = W/g = (160 N)/(9.8 m/s^2)
= 16.3 kg
Lungs vacoules on if those 2
Answer:
x(t) = d*cos ( wt )
w = √(k/m)
Explanation:
Given:-
- The mass of block = m
- The spring constant = k
- The initial displacement = xi = d
Find:-
- The expression for displacement (x) as function of time (t).
Solution:-
- Consider the block as system which is initially displaced with amount (x = d) to left and then released from rest over a frictionless surface and undergoes SHM. There is only one force acting on the block i.e restoring force of the spring F = -kx in opposite direction to the motion.
- We apply the Newton's equation of motion in horizontal direction.
F = ma
-kx = ma
-kx = mx''
mx'' + kx = 0
- Solve the Auxiliary equation for the ODE above:
ms^2 + k = 0
s^2 + (k/m) = 0
s = +/- √(k/m) i = +/- w i
- The complementary solution for complex roots is:
x(t) = [ A*cos ( wt ) + B*sin ( wt ) ]
- The given initial conditions are:
x(0) = d
d = [ A*cos ( 0 ) + B*sin ( 0 ) ]
d = A
x'(0) = 0
x'(t) = -Aw*sin (wt) + Bw*cos(wt)
0 = -Aw*sin (0) + Bw*cos(0)
B = 0
- The required displacement-time relationship for SHM:
x(t) = d*cos ( wt )
w = √(k/m)
Here is the answer. The external cause code for a passenger that is involved in a MVA that lost control on the highway and hits a guardrail is E815. Your fifth digit is a 1 for a motor vehicle
passenger. You would use an additional E code when a place of occurrence (example, home or parking lot) is
documented. In this case, the location is documented as the highway. Hope this helps.
Answer:
bouyant force - the upward force on an object in a fluid
boiling point - the temperature at which a liquid becomes a gas
solubility - the ability of a substance to dissolve in another
conductivity- the ability to transfer heat or electricity
density - the amount of mass in a given volume