Answer:
vₓ = xg/2y
Explanation:
In this question, let us find the time it takes for the ball on the right that has zero initial velocity to reach the ground.
By newton equation of motion we know that
y = v₀ t - ½ g t²
t = 2y / g
This is the time it takes for the ball on the right to reach the ground; at this time the ball on the left travels a distance
vₓ = x/t
vₓ = xg/2y
vₓ = xg/2y
Where we assume that x and y are known.
Answer:
2 in front of water and 1 in front of oxygen
Explanation:
This question is describing balancing a chemical reaction. A balanced chemical reaction has the same number of atoms of each elements on both the reactant and product side. According to the question, the reactants contains 4 atoms of oxygen. The reactants give rise to water (H20) and O2 in the products side.
This reaction is most likely the decomposition of hydrogen peroxide (H2O2) as follows:
H2O2 (l) ----> H2O (l) + O2(g)
Based on the description, H2O2 will be 2H2O2 as it is said to contain four atoms of oxygen. This means that, in order to have a balanced equation, we must place coefficient 2 in front of water and coefficient 1 in front of oxygen. That is;
2H2O2 (l) ----> 2H2O (l) + O2(g)
You don't convert kilograms to newtons. By the time you've heard of these units, you know that 'kilogram' is a unit of mass, 'newton' is a unit of force or weight, and that mass and weight are different things.
Mass and force are <u>related</u> by Newton's second law:
Force = Mass x acceleration .
From this simple formula, you can see that in order to relate a mass to a force, you need to know an acceleration. And if the acceleration changes, then the relationship between the force and the mass also changes. So there's no direct conversion.
ON EARTH ONLY, one kilogram of mass <em>weighs</em> 9.8 newtons. The acceleration that connects them is the acceleration of gravity on Earth. In other places, with different gravitational accelerations, 1 kilogram weighs more or less newtons.
But they don't convert directly. That would be like asking "How do you convert miles to miles-per-hour ?"
The power that must be delivered to the object by the force is 50 W
Power is defined as the rate of doing work. The power of an object in relation to the force and velocity is given by the following equation:
Power (P) = Force (F) × velocity (v)
P = F × v
From the question given above, the following data were obtained:
- Force (F) = 10 N
- Velocity (v) = 5 m/s
- Power (P) =?
P = F × v
P = 10 × 5
<h3>P = 50 W </h3>
Thus, the power that must be delivered to the object by the force is 50 W
Learn more on power: brainly.com/question/19539420
Answer:


Explanation:
In order to calculate the equivalent spring constant we need to use the next formula:

Replacing the data provided:


Finally, to calculate the frequency of oscillation we use this:

Replacing m and k:
