Answer:
51.85m/s
Explanation:
Given parameters:
Mass of ball = 0.0459kg
Force = 2380N
Time taken = 0.001s
Unknown:
Speed of the ball afterwards = ?
Solution:
To solve this problem, we use Newton's second law of motion:
F = m x
F is the force
m is the mass
v is the final velocity
u is the initial velocity
t is the time taken
2380 = 0.0459 x
0.0459v = 2.38
v = 51.85m/s
The energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.
<h3>Change in energy level of the electron</h3>
When photons jump from a higher energy level to a lower level, they emit or radiate energy.
The change in energy level of the electrons is calculated as follows;
ΔE = Eb - Ef
ΔE = -2.68 eV - (-5.74 eV)
ΔE = 3.06 eV
Thus, the energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.
Learn more about energy level here: brainly.com/question/14287666
#SPJ1
It’s c, the toy car changes direction
Answer:The choke coil works because it can act as an inductor. When the current pass through will change as AC currents creates a magnetic field in the coil that works against that current. This is known as inductance and blocks most of the AC current from passing through.
Explanation: