The force in the spring will be
.
The deflection of the beam will be
= 
<h3>What is a cantilever beam?</h3>
A rigid, horizontally extending structural member known as a cantilever is supported at only one end. Typically, it extends from a solidly affixed flat vertical surface, such as a wall.
Given that:-
- A cantilever beam AB of length L has fixed support at A and spring support at B.
- The spring behaves in a linearly elastic manner with stiffness k. If a concentrated load P is applied at B.
The spring force will be calculated as:-

Deflection will be given by:-

The spring force will be calculated by:-

The deflection of the beam will be given as:-

Therefore the force in the spring will be
..The deflection of the beam will be
= 
To know more about Cantilever beam follow
brainly.com/question/16791806
#SPJ1
Answer:
Explanation:
The pressures given are relative
p1 = 2000 psi
P1 = 2014 psi = 13.9 MPa
p2 = 4 psi
P2 = 18.6 psi = 128 kPa
Values are taken from the steam pressure-enthalpy diagram
h2 = 2500 kJ/kg
If the output of the turbine has a quality of 85%:
t2 = 106 C
I consider the expansion in the turbine to adiabatic and reversible, therefore, isentropic
s1 = s2 = 6.4 kJ/(kg K)
h1 = 3500 kJ/kg
t2 = 550 C
The work in the turbine is of
w = h1 - h2 = 3500 - 2500 = 1000 kJ/kg
The thermal efficiency of the cycle depends on the input heat.
η = w/q1
q1 is not a given, so it cannot be calculated.
Answer:
The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Xₚբᵣ = 0.632
X꜀ₘբᵣ = 0.5
Xₚբᵣ > X꜀ₘբᵣ
Explanation:
From the reaction rate coefficient, it is evident the reaction is a first order reaction
Performance equation for a CMFR for a first order reaction is
kτ = (X)/(1 - X)
k = reaction rate constant = 0.05 /day
τ = Time constant or holding time = V/F₀
V = volume of reactor = 280 m³
F₀ = Flowrate into the reactor = 14 m³/day
X = conversion
k(V/F₀) = (X)/(1 - X)
0.05 × (280/14) = X/(1 - X)
1 = X/(1 - X)
X = 1 - X
2X = 1
X = 1/2 = 0.5
For the PFR
Performance equation for a first order reaction is given by
kτ = In [1/(1 - X)]
The parameters are the same as above,
0.05 × (280/14) = In (1/(1-X)
1 = In (1/(1-X))
e = 1/(1 - X)
2.718 = 1/(1 - X)
1 - X = 1/2.718
1 - X = 0.3679
X = 1 - 0.3679
X = 0.632
The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Answer:
(A) elemental, alloy, or compound thin films are deposited on to a bulk substrate
Explanation:
In film deposition there is process of depositing of material in form of thin films whose size varies between the nano meters to micrometers onto a surface. The material can be a single element a alloy or a compound.
This technology is very useful in semiconductor industries, in solar panels in CD drives etc
so from above discussion it is clear that option (a) will be the correct answer
Answer:
a) V =10¹¹*(1.5q₁ + 3q₂)
b) U = 1.34*10¹¹q₁q₂
Explanation:
Given
x₁ = 6 cm
y₁ = 0 cm
x₂ = 0 cm
y₂ = 3 cm
q₁ = unknown value in Coulomb
q₂ = unknown value in Coulomb
A) V₁ = Kq₁/r₁
where r₁ = √((6-0)²+(0-0)²)cm = 6 cm = 0.06 m
V₁ = 9*10⁹q₁/(0.06) = 1.5*10¹¹q₁
V₂ = Kq₂/r₂
where r₂ = √((0-0)²+(3-0)²)cm = 3 cm = 0.03 m
V₂ = 9*10⁹q₂/(0.03) = 3*10¹¹q₂
The electric potential due to the two charges at the origin is
V = ∑Vi = V₁ + V₂ = 1.5*10¹¹q₁ + 3*10¹¹q₂ = 10¹¹*(1.5q₁ + 3q₂)
B) The electric potential energy associated with the system, relative to their infinite initial positions, can be obtained as follows
U = Kq₁q₂/r₁₂
where
r₁₂ = √((0-6)²+(3-0)²)cm = √45 cm = 3√5 cm = (3√5/100) m
then
U = 9*10⁹q₁q₂/(3√5/100)
⇒ U = 1.34*10¹¹q₁q₂