Answer:
LOTS
Explanation:
Catapults, Towers, and Trebuchets were all used by Saladin to capture Jerusalem in 1187
Answer:
C. Multipoint fuel injection
Explanation:
A fuel injection system can be defined as a system found in the engine of most automobile cars, used for the supply of a precise amount of fuel or fuel-air mixture to the cylinders in an internal combustion engine through the use of an injector.
There are different types of fuel injection system and these includes;
I. Central-point injection.
II. Throttle (single point) body injection.
III. Gasoline direct injection.
IV. Multipoint (port) fuel injection.
Multipoint fuel injection is a type of fuel injection system that operates with fuel injectors located only in the intake manifold near each intake valve and sprays fuel toward the valve. As a result, it allows for the supply of a precise amount of fuel and as such creating a better air-fuel ratio for automobile cars.
Answer: Introduction to Steam Distillation. Steam distillation is a separation process which purifies isolate temperature-sensitive materials, such as natural aromatic compounds. In steam distillation, dry steam is passed through the plant material. These vapours undergo condensation and collection in receivers.
Explanation:
Answer:
Δ enthalpy = -23 Btu/Ibm
Explanation:
Given data:
Pressure ( P1 ) = 250 psi
Initial Temperature ( T1 ) = 175°F
Final temperature ( T2 ) = 20°F
<u>Calculate the change in the enthalpy of R-134a </u>
From R-134 table
h1 = 129.85 Btu/Ibm
s1 = 0.23281 Btu/Ibm.R
note : entropy is constant
hence ; s1 = s2
by interpolation ; h2 = 106.95
Δ enthalpy = h2 - h1
= ( 106.95 - 129.85 ) = -23 Btu/Ibm
Answer:
The temperature of the first exit (feed to water heater) is at 330.15ºC. The second exit (exit of the turbine) is at 141ºC. The turbine Power output (if efficiency is %100) is 3165.46 KW
Explanation:
If we are talking of a steam turbine, the work done by the steam is done in an adiabatic process. To determine the temperature of the 2 exits, we have to find at which temperature of the steam with 1000KPa and 200KPa we have the same entropy of the steam entrance.
In this case for steam at 3000 kPa, 500°C, s= 7.2345Kj/kg K. i=3456.18 KJ/Kg
For steam at 1000 kPa and s= 7.2345Kj/kg K → T= 330.15ºC i=3116.48KJ/Kg
For steam at 200 kPa and s= 7.2345Kj/kg K → T= 141ºC i=2749.74KJ/Kg
For the power output, we have to multiply the steam flow with the enthalpic jump.
The addition of the 2 jumps is the total power output.