1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
15

A venturi meter is to be installed in a 63 mm bore section of a piping system to measure the flow rate of water in it. From spac

e considerations, the maximum differential head in the mercury manometer is to be 235 mm. The maximum expected flow rate is 240 litres per minute. Design the throat diameter by assuming the discharge coefficient to be 0.8
Engineering
1 answer:
Alex Ar [27]3 years ago
4 0

Answer:

Throat diameter d_2=28.60 mm

Explanation:

 Bore diameter d_1=63mm  ⇒A_1=3.09\times 10^{-3} m^2

Manometric deflection x=235 mm

Flow rate Q=240 Lt/min⇒ Q=.004\frac{m^3}{s}

Coefficient of discharge C_d=0.8

We know that discharge through venturi meter

 Q=C_d\dfrac{A_1A_2\sqrt{2gh}}{\sqrt{A_1^2-A_2^2}}

h=x(\dfrac{S_m}{S_w}-1)

S_m=13.6 for Hg and S_w=1 for water.

h=0.235(\dfrac{13.6}{1}-1)

h=2.961 m

Now by putting the all value in

Q=C_d\dfrac{A_1A_2\sqrt{2gh}}{\sqrt{A_1^2-A_2^2}}

0.004=0.8\times \dfrac{3.09\times 10^{-3} A_2\sqrt{2\times 9.81\times 2.961}}{\sqrt{(3.09\times 10^{-3})^2-A_2^2}}

A_2=6.42\times 10^{-4} m^2

 ⇒d_2=28.60 mm

So throat diameter d_2=28.60 mm

     

You might be interested in
A weighted, frictionless piston-cylinder device initially contains 5.25 kg of R134a as saturated vapor at 500 kPa. The container
kykrilka [37]

Answer:

-6.326 KJ/K

Explanation:

A) the entropy change is defined as:

delta S_{12}=\int\limits^2_1  \, \frac{dQ}{T}

In an isobaric process heat (Q) is defined as:

Q= m*Cp*dT

Replacing in the equation for entropy  

delta S_{12}=\int\limits^2_1 \frac{m*Cp*dT}{T}

m is the mass and Cp is the specific heat of R134a. We can considerer these values as constants so the expression for entropy would be:  

delta S_{12}= m*Cp*\int\limits^2_1 \frac{ dT }{T}  

Solving the integral we get the expression to estimate the entropy change in the system  

delta S_{12}= m*Cp *ln(\frac{T_{2}}{T_{1}})

The mass is 5.25 Kg and Cp for R134a vapor can be consulted in tables, this value is 0.85\frac{kJ}{Kg*K}

We can get the temperature at the beginning knowing that is saturated vapor at 500 KPa. Consulting the thermodynamic tables, we get that temperature of saturation at this pressure is: 288.86 K

The temperature in the final state we can get it from the heat expression, since we know how much heat was lost in the process (-976.71 kJ). By convention when heat is released by the system a negative sign is used to express it.

Q= m*Cp*dT

With dt=T_{2}-T_{1} clearing for T2 we get:

T_{2}=\frac{Q}{m*Cp}+T1= \frac{-976.71kJ}{5.25Kg*0.85\frac{kJ}{Kg*K}}+288.86 K =69.98 K

Now we can estimate the entropy change in the system

delta S_{12}= m*Cp*ln(\frac{T_{2}}{T_{1}})= 5.25Kg*0.85\frac{kJ}{Kg*K}*ln(\frac{69.98}{288.861})= -6.326\frac{kJ}{K}

The entropy change in the system is negative because we are going from a state with a lot of disorder (high temperature) to one more organize (less temperature. This was done increasing the entropy of the surroundings.  

b) see picture.

3 0
3 years ago
The development of various technologies led to many historic events. Use information from the Internet to describe one major his
11111nata11111 [884]

Answer:

1. Industrial revolution was initiated or borne through the production of Steel

2. World War 1 led to the development of Tanks

Explanation:

The production of Steel through the Bessemer Process in the middle of the nineteenth century was a major technological development that spurred the Industrial revolution. This invention led to the widespread use of steel in the production of many things including vehicles and airplanes.

During the First World War in 1914, soldiers found the use of just their armaments in battle as not so productive. This led to the development of Tanks in 1915 that would continue moving towards the enemy even when being shot at.

4 0
3 years ago
Careful planning will save time, __________, and energy while ensuring the production of a high quality product.
Svet_ta [14]
Juicers nb 345676 at that rate it will be amazing
5 0
3 years ago
The difference between an initial condition and a boundary condition for conduction in a solid is:___________
leva [86]

Answer:

c. an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.

Explanation:

Conduction refers to the transfer of thermal energy or electric charge as a result of the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.

In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.

Any material or object that allow the conduction (transfer) of electric charge or thermal energy is generally referred to as a conductor. Conductors include metal, steel, aluminum, copper, frying pan, pot, spoon etc.

Hence, the difference between an initial condition and a boundary condition for conduction in a solid is that an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.

7 0
3 years ago
Oil with a density of 800 kg/m3 is pumped from a pressure of 0.6 bar to a pressure of 1.4 bar, and the outlet is 3 m above the i
Naddik [55]

Answer:

23.3808 kW

20.7088 kW

Explanation:

ρ = Density of oil = 800 kg/m³

P₁ = Initial Pressure = 0.6 bar

P₂ = Final Pressure = 1.4 bar

Q = Volumetric flow rate = 0.2 m³/s

A₁ = Area of inlet = 0.06 m²

A₂ = Area of outlet = 0.03 m²

Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s

Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s

Height between inlet and outlet = z₂ - z₁ = 3m

Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

\frac {P_1}{\rho g}+\frac{V_1^2}{2g}+z_1+h=\frac {P_2}{\rho g}+\frac{V_2^2}{2g}+z_2\\\Rightarrow h=\frac{P_2-P_1}{\rho g}+\frac{V_2^2-V_1^2}{2g}+z_2-z_1\\\Rightarrow h=\frac{(1.4-0.6)\times 10^5}{800\times 9.81}+\frac{6.67_2^2-3.33^2}{2\times 9.81}+3\\\Rightarrow h=14.896\ m

Work done by pump

W_{p}=\rho gQh\\\Rightarrow W_{p}=800\times 9.81\times 0.2\times 14.896\\\Rightarrow W_{p}=23380.8\ W

∴ Power input to the pump 23.3808 kW

Now neglecting kinetic energy

h=\frac{P_2-P_1}{\rho g}+z_2-z_1\\\Righarrow h=\frac{(1.4-0.6)\times 10^5}{800\times 9.81}+3\\\Righarrow h=13.19\ m\\

Work done by pump

W_{p}=\rho gQh\\\Rightarrow W_{p}=800\times 9.81\times 0.2\times 13.193\\\Rightarrow W_{p}=20708.8\ W

∴ Power input to the pump 20.7088 kW

6 0
3 years ago
Other questions:
  • An immersion heater has a resistance of 50Ω and carries a current of 2.5A current. What will be the final temperature of 500 g o
    11·1 answer
  • Which term defines the amount of mechanical work an engine can do per unit of heat energy it uses?
    5·1 answer
  • In order to avoid slipping in the shop, your footwear should __
    10·2 answers
  • 1- A square-wave inverter has a dc source of 96 V and an output frequency of 60 Hz. The load is a series RL load with R = 5 Ohm
    7·1 answer
  • Consider a rectangular fin that is used to cool a motorcycle engine. The fin is 0.15m long and at a temperature of 250C, while t
    5·1 answer
  • A ship tows a submerged cylinder, 1.5 m in diameter and 22 m long, at U = 5 m/s in fresh water at 20°C. Estimate the towing powe
    14·1 answer
  • The current flow in an NMOS transistor is due to one of the following:
    11·1 answer
  • A jackhammer uses pressurize gas to change it forced to the hammer what type of mechanical system is it a jackhammer it uses in
    5·1 answer
  • Porque el invento de la bombilla es importante?
    6·1 answer
  • The product of two factors is 4,500. If one of the factors is 90, which is the other factor?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!